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Abstract
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when contacting appropriate buyers. Buyers in the model have heteroge-
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of reservation trading strategies (related papers with homogeneous valua-

tions imply bang-bang solutions that are awkward for the economics and

mathematics). Using bifurcation theory, we show there are equilibria where
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tions, not mechanical assumptions, like increasing returns or related devices
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1 Introduction

This paper studies economic dynamics in frictional markets with intermediated

trade. As in related papers, in our framework middlemen buy goods or assets

from sellers, hold them in inventory, and sell when they contact appropriate buy-

ers. A key extension over past work is that match-specific valuations of buyers are

heterogeneous, allowing a characterization of outcomes in terms of reservation trad-

ing strategies. This is useful because models with homogeneous valuations imply

bang-bang (corner) solutions that create difficulties for the economics and math-

ematics. We prove there exist multiple equilibria, including cycles in continuous

and in discrete time, where market participation, trading volume, prices, liquidity

and other variables fluctuate as self-fulfilling prophecies. The analysis makes use

of bifurcation methods that are not applicable with bang-bang solutions.

Our approach builds on research, going back to Rubinstein andWolinsky (1987),

using search-and-bargaining theory to show how roles for intermediaries can emerge

from their advantages in certain attributes, including search efficiency, bargaining

power, information, storage costs, inventory capacity, or the ability to use credit.1

Most of these papers concentrate on steady state, or sometimes on transitions to

steady state, while we emphasize endogenous — i.e., belief-based — fluctuations.

While some previous studies hint at the possibility of endogenous fluctuations in

intermediated markets, they do not prove that such equilibria exist.

The objects being traded can be either assets or goods, the difference being that

inventories of assets yield positive returns, while goods yield negative returns one

can interpret as storage costs. That distinction is taken from Nosal et al. (2019), a

model that is related to ours, but different in important ways explained in Section

1There are dozens of papers worthy of citation, but to save space we refer readers to an

online bibliography at https://github.com/qiao-ziqi/middlemen. Here are just a few examples:

in Rubinstein and Wolinsky (1987) middlemen meet buyers faster than sellers meet buyers; in

Biglasiser (1993) and Li (1998) they have informational advantages; in Masters (2008) and Nosal

et al. (2015) they have higher bargaining power or lower costs; in Shevchenko (2004) and Watanabe

(2010) they hold more inventory; in Gong et al. (2025) they are better at using credit. Of these

papers, only Gong et al. (2025) study endogenous fluctuations, but their mechanism is entirely

different, relying on the well-know feature that imperfect credit models can display multiplicity

and belief-based dynamics, which is not relevant here.
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4.5. In any case, having agents trading assets connects us to a literature on dealers

in OTC (over the counter) financial markets following Duffie et al. (2005), recently

surveyed by Hugonnier et al. (2024). However, inventories — which play a big role

here — are absent in those models: dealers simply transfer assets between sellers and

buyers using a frictionless interdealer market (with exceptions, e.g., Weill 2008, but

he does not consider belief-based dynamics).

Our dynamics emerge from the interaction of inventories, heterogenous valua-

tions, and endogenous entry by sellers. When middlemen meet buyers, they could

trade, but there is the option of holding out for a higher-valuation buyer. Agents

use reservation strategies, as in standard search theory, but now there is a strategic

effect. Namely, if reservation values are low middlemen are more inclined to sell to

buyers, and hence more often need to replenish inventories. That makes it easier

for sellers to trade, increasing seller entry and making it easier for middlemen to

replenish inventories, thus rationalizing low reservation values. And if reservation

values are high middlemen are less likely to sell and less often need to replenish

inventories, thus lowering seller entry, making it harder to replenish inventories and

rationalizing high reservation values. This strategic complementarity can lead to

multiplicity and cycles.

Interpreting the framework in terms of retail goods markets has some interest-

ing implications. For one, a stylized fact is that the efficiency or productivity of

these markets differs dramatically across economies, as discussed by Lagakos (2016).

Multiplicity is consistent with the idea that retail markets in some economies may

be stuck in a bad equilibrium, where low efficiency or productivity is a self-fulfilling

prophecy.2 A different motivation comes from the idea that intermediation is re-

lated to volatility. Gehrig and Ritzberger (2022) push this and provide references

to empirical work supporting it. The basic idea is that middlemen speed up trade,

which may be desirable, but can also increase volatility. We agree that the relation-

2Given his expertise, we quote Lagakos, with permission, from correspondence: “That does

sound intriguing — I don’t remember seeing a paper that says something like that. I have the

impression that even countries of similar income levels often have pretty different retail structure

and efficiency. That smells like it could be multiple equilibria.”
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ship between intermediation and volatility is worth investigation, and think that

dynamic search theory is an attractive way to analyze this.

In particular, we show using bifurcation theory the existence of limit cycles.

The use of these methods goes back to Benhabib and Nishimura (1979) in growth

theory. Applications in search include Diamond and Fudenberg (1989), who get

cycles in Diamond (1982a) if the matching technology displays increasing returns,

and Mortensen (1999), who gets cycles in a version of Pissarides (2000) if the pro-

duction technology displays increasing returns. Whatever the empirical relevance

of increasing returns, it seems fair to say those results are driven by mechanical

technology specifications that play no role here.3

There are also papers with multiplicity and endogenous dynamics in monetary

economics (see Rocheteau and Wright 2013 and references therein). The forces

behind those results are different, relying on the notion that what you accept in

exchange depends on what others accept. In particular, as explained above, our

results work through inventories, heterogenous valuations and endogenous entry,

factors that are not at all necessary in monetary theory.4 One feature of monetary

models is that utility is not perfectly transferable. Burdett and Wright (1998) show

even nonmonetary search models with nontransferable utility can have multiplicity

and dynamics while otherwise similar models with transferable utility cannot (see

also Martel et al. 2023). This plays not role here, as we have transferable utility.

Motivating a general interest in inventories, there is much discussion of how

they are an important component of business cycles (Blinder 1990 is a classic,

while Khan and Thomas 2007 is a more recent, example). This is at least partly

because they are volatile and procyclical, as can be understood with a supply-side

story: when productivity is high, it is efficient to produce a lot and keep some

3Other search models with dynamics based on increasing returns or related devices include

Howitt and McAfee (1988,1992), Boldrin et al. (1993), Kaplan and Menzio (2016) and Sniekers

(2018). Fershtman and Fishman (1992), Burdett and Coles (1998) and Albrecht et al. (2013) are

examples of search models with somewhat different dynamics.
4We mention that early work by Kehoe et al. (1993) and Renero (1988) study cycles in the

discrete-time model of Kiyotaki and Wright (1989), but Oberfield and Trachter (2012) show the

cycles vanish as period length shrinks. This is a reason to consider both continuous and discrete

time, as discussed in detail in Section 4.3.
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as inventory to spread good times into the future. Ours is a demand-side story:

holding productivity constant, when inventories are high, production slows because

middlemen are not buying. This could make inventories countercyclical if there were

no other shocks, but of course there are other shocks. In any case, this paper is not

trying to account for the macro data, it is a micro model of what can happen as a

self-fulfilling prophecy about inventories, trading strategies and entry.

In what follows, Section 2 presents a simple specification, without entry, where

there is a unique equilibrium. Section 3 adds entry by sellers and shows how

multiplicity and cycles emerge. Section 4 explores other topics, including welfare,

entry by middlemen, discrete-time models, and a setup where consumers instead

of middlemen hold inventories. Section 5 concludes.

2 The Basic Framework

A continuum of infinitely-lived, risk-neutral agents come in three types, labeled

,  and  , for buyers, sellers and middlemen. Type  can participate in a

continuous-time, bilateral matching market if they pay entry cost , but for now

 = 0 ∀ so everyone participates. Indeed, they participate forever, which is not
crucial but simplifies some calculations compared to, e.g., Rubinstein and Wolinsky

(1987) where  stays forever while  and  exit after one trade (see also Nosal et

al. 2015, Vayanos and Wang 2007 and Farboodi et al. 2023). When  and  meet,

 can produce an indivisible object  at 0 cost that gives  match-specific payoff

, with CDF  () on [ ]. Note that  can be utility if  consumes , or profit

if  uses it as an asset for investment or input for production.

Also,  could produce for , who can store  in inventory and may or may not

sell it to  when they meet. While  can store , for now neither  nor  want

to store it —  prefers to produce just before trade and  prefers to consume right

after trade — but that changes in Section 4.4. There is a flow payoff  for with 

in inventory, and we say  is an asset if   0 (it has a return), while  is a good if

  0 (it has a storage cost), usage that is not especially important but helps keep
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track of cases. Holdings of  by  are constrained to {0 1}, which is special, but
allows one to make salient points in a succinct way in many applications of search

theory.5 Inventories held by  depreciate by disappearing at rate  ≥ 0.
Let  be the measure of  =  in the market, which is exogenous for

now, and  the measure of  with  in inventory, which is endogenous. There is

a standard matching technology: you meet someone at Poisson rate ; and each

meeting is a random draw from the population. In particular, if  is the measure

of all market participants, the arrival rate of  for both  and  is  , so 

has no advantage over  in search. Given   0, when  and  meet they always

trade, since it does not affect continuation values. When  meets  with  = 0

they trade unless   0 and || is big (more on this below). The question is, when
 with  = 1 meets , do they trade? As will be shown, the answer depends on

fundamentals, including , of course, but also on beliefs.

If  gives  to , the latter pays  determined by bargaining with transferable

utility. Thus, if Σ is the total surplus available when  and  meet, they trade if

Σ  0, and ’s surplus is Σ, where  ≥ 0 is ’s bargaining power against ,
with  +  = 1. Letting  and  be the value functions for  and ,  the

value function for  with  ∈ {0 1}, and ∆ = 1 − 0, we have
6

Σ = , Σ = ∆, and Σ =  −∆ (1)

Note the continuation values and threat points for  and  cancel in the surpluses,

so  and  do not appear. From these follow what we call the direct price, the

wholesale price, and the retail price, given respectively by

 = ,  = ∆, and  =  + ∆ (2)

5In addition to middlemen models à la Rubinstein and Wolinsky (1987), examples with {0 1}
restrictions include the original search-equilibrium model of Diamond (1982a), the monetary mod-

els cited in fn. 4 and many others, banking models like Cavalcanti and Wallace (1999), OTC asset

models like Duffie et al. (2005), labor models like Pissarides (2000) and partnership models like

Burdett and Coles (1997). One can allow inventories in, say, {0 1 2 }, but then one must use
numerical methods, and we are after analytic results.

6At this point we start subscripting variables by , including ,  and  even though they

are constant in this most basic version of the environment, so that the same expressions hold

when they are endogenous; we do not subscript  by  since it is fixed in all versions.
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When  with  = 1 meets  and the match-specific valuation is , they trade

with probability   =  (), where  is the reservation value:

 () =

⎧⎨⎩ 0 if   

[0 1] if  = 

1 if   

(3)

Clearly,  = ∆ = 1 − 0. Hence, the expected flow payoff for  is

 =




E +




E [ (∆) ( −∆)] + ̇ (4)

where  is the discount rate and and prices have been eliminated using (2). The

first term on the RHS is the arrival rate of  times ’s share of the surplus; the

second is the arrival rate of  with  = 1 times the probability they trade times

’s share of the surplus; the third is the pure time change in value.

Similarly, for ,

 =




E +
 ( − )



∆ + ̇ (5)

and for  ,

0 =




∆ + ̇0 (6)

1 =






Z ∞

∆

( −∆)  () + − ∆ + ̇1 (7)

Subtracting (7)-(6) and simplifying, using integration by parts, we get

∆̇ = −




Z ∞

∆

[1−  ()]  +




∆ − + ( + )∆ (8)

The evolution of inventories held by  is

̇ =
 ( − )



− E (∆)



−  (9)

where E (∆) = Pr (  ∆) is the unconditional probability that and  trade.

The first term on the RHS is the measure of  without  times the rate at which

they buy it from ; the second is the measure of  with  times the rate at which

they sell it to ; the third is depreciation.
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Equilibrium is defined as a nonnegative and bounded path for (∆ ) satisfying

the dynamical system (8)-(9) with initial condition 0 giving inventories at  = 0.
7

A steady state is a constant (∆ ) satisfying (8)-(9). Given an equilibrium (∆ ),

or steady state (∆ ), all other variables follow easily, including payoffs, prices,

trade volume, etc.

With no intermediaries,  = 0, equilibrium is obviously unique, with  and

 trading whenever they meet. With   0, first notice that the path of ∆ is

independent of . Then from (8)

∆̇

∆

=




 [1−  (∆)] +




 +  +   0

implying ∆ must equal its steady state value ∀, since any other solution to (8)
diverges — a result that reappears in some, but not all, formulations below, and is

discussed more later. Given ∆, (9) implies

̇


= −

∙




+
E (∆)



+ 

¸
 0

so  converges monotonically to its steady state. This proves:

Proposition 1 Without entry equilibrium is unique: there are no dynamics due to

self-fulfilling expectations.

3 The Main Model

Now let  face a participation decision, which is natural and nice because it lets

us compare economies with and without middlemen while keeping the environment

otherwise the same.8 Then  and  can vary with time, while  and  are

constant. The entry condition  =  implies ̇ = 0. Then from (5) we get

 = E +  ( − ) ∆ (10)

7For  ∈ [0 ], its path obviously must be nonnegative and bounded. For ∆, boundedness
follows from transversality (e.g., see Rocheteau and Wright 2013), while ∆ ≥ 0 follows because
∆  0 is inconsistent with free disposal, which is naturally assumed.

8The environment is the same with and without in the sense that it always has endogenous

market composition due to  entry. With  entry, we eliminate endogenous composition if we

eliminate  , but that case is still covered in Section 4.2. For completeness we tried entry by ,

too, but it is less interesting, unsurprisingly, since type  is fairly mechanical here.
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This lets us eliminate  from (8) and (9), resulting in a two-dimensional system∙
∆̇

̇

¸
=

∙
(∆)

(∆)

¸
 (11)

where  and  are

 (∆) = − 

E + ( − ) ∆

Z ∞

∆

[1−  ()]  (12)

+

∙
− ( + )

E + ( − ) ∆

¸
∆ − + ( + )∆

and

 (∆) =

∙
− ( + )

E + ( − ) ∆

¸
( − ) (13)

− E (∆)

E + ( − ) ∆

− 

Equilibrium with entry by  is defined as a nonnegative and bounded path for

(∆ ) satisfying (11), the initial condition 0 and the entry condition  = .

Define the  locus and ∆ locus as the curves in (∆) space along which ̇ = 0

and ∆̇ = 0, so that they intersect at steady states. We claim both have positive

slopes. To verify this, note that while the curves can have kinks (see below),

wherever they are differentiable we have:

∆



¯̄̄̄
∆̇=0

=
∆

©


R∞
∆
[1−  ()]  + ( + ) ∆

ª


 0 (14)

∆



¯̄̄̄
̇=0

=
 +

1

∆ [ ( − )− ] +  [1−  (∆)] + 


−


 [ ( − )− ] +  (∆)
 0 (15)

where

 =

½


Z ∞

∆

[1−  ()]  + ( + ) ∆

¾
( − ) 

+ ( + ) 2 + +  [1−  (∆)] 

As both slopes are positive there may be multiple steady states. Although

we are actually interested in heterogeneous , as a preliminary step, consider the

degenerate case,  = ̄ with probability 1. In this case there are three possible

regimes: (i)  and  trade with probability  = 1 and ∆ ≤ ̄; (ii)  and  trade

with probability  = 0 and ∆ ≥ ̄; (iii)  and  trade with probability  ∈ (0 1)
and ∆ = ̄. Consider first   0. Then we have (all proofs are in the Appendix):
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Proposition 2 Suppose  = ̄ with probability 1 and   0. There exists ̃  0

and ̂  ̃ such that: (i) if  ∈ [0 ̃) there is a unique steady state and it has ∆  ̄;

(ii) if  ∈ (̂∞) there is a unique steady state and it has ∆  ̄; (iii) if  ∈ (̃ ̂)
there are three steady states, ∆  ̄, ∆  ̄, and ∆ = ̄.

Example 1:  = 1,  = 0008,  = 004,  = 005,  = 05,  = 07,  = 1,

 = 05,  = 01, ̄ = 1, and various .

Fig. 1a: Example 1. Fig. 1b: Discrete-time version.

Fig. 1 illustrates the result for Example 1 in the left panel (the right panel is

for the discrete-time version in Section 4.3; it can be ignored for now). For  = 01

there is one steady state; for  = 02 there are three; and for  = 03 there is one.

Multiplicity is explained as above: if ∆ is low,  with  trades it to , so the

probability  has  is low, encouraging  entry and making it easy for  to get

, consistent with low ∆; if ∆ is high,  with  does not trade  to , so the

probability  has  is high, discouraging  entry, consistent with high ∆. When

both  = 1 and  = 0 both satisfy the equilibrium conditions, as usual, so does

some  ∈ (0 1).
Notice that market liquidity — i.e., the ease with which agents can buy and sell

 — is high (low) when ∆ is low (high). Multiplicity means market liquidity is

not pinned down by fundamentals, consistent with the idea mentioned earlier that

the efficiency/productivity of retail markets differs dramatically across economies

9



(Lagakos 2016). Also notice that ̃  0 in Proposition 2, meaning steady state is

unique for  = 0. This is also true for   0:9

Proposition 3 Suppose  = ̄ with probability 1 and   0. Then there is a

unique steady state and it has ∆  ̄.

This is easy to understand: with  degenerate, ’s only alternative to trading  to

 is to hang onto , but such a “buy and hold” strategy makes no sense if  ≤ 0.
These results, with  degenerate, are not at all our main interest. One reason

is this: accepting the notion that   0 applies to asset markets and   0 to goods

markets, the results mean this kind of multiplicity could emerge in the former but

not the latter. We show below that this multiplicity can emerge with   0 when

 is not degenerate. Intuitively, nondegenerate  provides an additional motive for

 to not trade with  — it can be preferable to wait for a higher . That does not

imply that  is irrelevant, of course, since higher  makes and  less inclined to

trade for any realization of , just like, e.g. higher unemployment benefits raise the

reservation wage in job-search theory; it does imply that   0 need not preclude

multiplicity when  is nondegenerate.

Another reason to move on from  degenerate is that, as shown in Fig. 1a,

when there are multiple steady states the middle one lies on the flat segment of

the  locus at ∆ = ̄. This makes it hard to characterize dynamics, while, as

shown below, bifurcation methods can be used to good effect once we relax the

extreme restriction  = ̄ with probability 1. Yet another reason is this: when

 is degenerate,  and  are only indifferent to trade in the rare event  = ∆.

Hence, if ∆ were to vary over time, intermediation activity could vary, too, but

with degenerate  we get a bang-bang situation (i.e.,  is almost always 0 or 1).

As show below, with disperse  that is still possible, for some parameterizations,

but it can also easily be the case that intermediation activity — and hence other

endogenous variables — fluctuate smoothly over time.

9These results assume  and  trade, which is true if   0, and if   0 but || is not big,
while if   0 and || is big they do not trade, and any  starting with  disposes of it.
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To begin the analysis with disperse , here is an extension of Proposition 3:

Proposition 4 Consider a general distribution  (), where  ∈ [ ̄]. If   0

there does not exist a steady state with ∆ ≥ ̄.

This is also easy to understand: a permanent “buy and hold” strategy still cannot

make sense if  ≤ 0, but a “buy and holdout for higher ” strategy can. This is
verified by an example:

Example 2:  = 096,  = 0001,  = 001,  = 0055,  = 04,  = 095,

 = 1,  = 01,  = 0225,  = −0014 and  ∼ N (1 1) + (1− )N (2 2)
with  = 05, 1 = 1, 2 = 2, 1 = 001, and 2 = 06.

Fig. 2a: Example 2, Steady States. Fig. 2b: Example 2, Phase Plane.

In the left panel, Fig. 2 shows the  and ∆ curves for Example 2, where  () is

a mixture of two normal distributions, chosen to illustrate two key points.10 These

points are: the curves can be smooth with no flat segments; and, even with   0,

there can be multiple steady states, which here are (0103 0961), (0124 1005)

and (0137 1042). In the right panel, Fig. 2 zooms in and shows part of the flow

for the dynamic system, although we postpone derivation of that until establishing

a few more results about steady state.

10In this example the support of  is (−∞+∞), and clearly  and  do not trade in meetings

with   0. Hence the above equations need to be modified in an obvious way, left as an exercise,

but having support (−∞+∞) actually plays no big role — as usual, we can reinterpret  and

 meeting with   0 as  and  not meeting. Examples below use uniform distributions where

  0 with probability 1, but we like this one because the curves are globally smooth.
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The next result proves existence of steady state for a general  (), and proves

the number of steady states is generically odd:11

Proposition 5 If   −, generically there are an odd number of steady

states; they all entail 0     ( + ) and ∆  0.

As mentioned for the degenerate case, it is also true here that higher ∆ means

lower market liquidity. To consider related variables, the average markup  is the

ratio of retail and wholesale prices,

 =

∞
∆

 ()

1− (∆)


=

R∞
∆
( + ∆)  ()

∆ [1−  (∆)]


The spread  is the difference between these prices,

 =

R∞
∆
( + ∆)  ()

1−  (∆)
− ∆

Trade volume is 

 =



+




[1−  (∆)] +

 ( − )




These are relevant because the markup, spread and volume are used as measures

of frictions in both theory (e.g., Weill 2008; Lagos and Rocheteau 2009) and empir-

ical work (e.g., Brennan et al. 1998). Across steady states in Fig. 2a, (  ) are

= (15491 1393 0025), (17656 1675 0019) and (19382 1915 0016).12 Thus at

higher ∆, both retail and wholesale prices are higher, but on net the latter effect

dominates so that the markup and spread are higher, as is volume, as might be ex-

pected in a less liquid market. Later we will investigate how these variables behave

over time, not just across steady states.

To begin the dynamics, consider the local properties of steady states. This next

result shows that when the ∆ curve intersects the  curve from above (below) the

steady state is a saddle (spiral):

11The condition in Proposition 5 can be understood as follows: If   0,  is willing to hold

 both for trading and for its return. If   0 with || not too big,  is willing to hold  for

trading if not for its return, but again, if   0 with || too big would not acquire it and would

dispose of it if it was in inventory as an initial condition. Now   − simply rules out

  0 and || too big.
12Because   0 is possible in this example, volume is calculated as  = () [1−  (0)]+

() [1−  (∆)] +  ( − )  .
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Proposition 6 If at a steady state ∆
¯̄̄
∆̇=0

 ∆
¯̄̄
̇=0

the steady state is

a saddle point; if ∆
¯̄̄
∆̇=0

 ∆
¯̄̄
̇=0

the steady state is a spiral that can be

locally a sink or a source.

In the proof of Proposition 5 we show the ∆ locus is above the  locus at  = 0 and

below it at  = . Hence, ranking steady states by the value of , the odd-indexed

ones are saddles and the even-indexed ones spirals.

In Fig. 2b, the lower and upper steady states are saddle points and their stable

(unstable) manifolds are shown in blue (pink). For these parameters the middle

steady state is a sink, with branches of the unstable manifolds of the other steady

states spiraling in towards it. Hence, starting from any 0 in some range, equilib-

rium can converge to the upper or lower steady state, or can spiral into the middle

steady state, depending on initial beliefs about ∆0.

To go beyond these results, and see what else can happen, consider Fig. 3a,

showing the situation for Example 3 below. Again there are three steady states,

but now the middle one is a source rather than a sink. Again, starting from any 0

in some range, there are many equilibria depending on∆0, but now we cannot spiral

into the middle steady state. This suggests the possibility of cycles, a possibility

we now explore using bifurcation theory.13

To be clear, the standard method in applications like this establishes the exis-

tence of cycles for sets of parameters with positive measure, not merely for numer-

ical examples, if certain conditions hold, and numerical methods are used to verify

that these conditions can hold. We also empathize that these conditions generally

cannot be verified for all parameters, since cycles can be expected to exist for at

most subsets of parameters. Moreover, these conditions generally cannot be verified

13References on the dynamical system theory used here include Guckenheimer and Holmes

(1983) and Kuznetsov (2004), while Azariadis (1993) is a standard source for economic applica-

tions. We employ the Hopf bifurcation, as used to get continuous-time cycles in a search model

by, e.g., Diamond and Fudenberg (1989), and the saddle loop bifurcation, used by, e.g., Coles and

Wright (1998) or Mortensen (1999). Sniekers (2018) uses the Bogdanov-Takens bifurcation, not

previously used in search theory, but used in a macro model by Benhabib et al. (2001). While

Sniekers (2018) approach may have some advantages, we find it less tracatbale, and in any case

we get what we need with our approach.
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in many standard models, since they do not have cyclic equilibria. Proposition 1,

e.g., shows that our same environment with one difference — no entry — has a unique

equilibrium and no cycles due to self-fulfilling beliefs, as is well known for standard

search models like Diamond or Pissarides, as well as Duffie et al. (see Trejos and

Wright 2016), without devices like increasing returns or monetary considerations,

devices that play no role here.

Example 3 (saddle loop bifurcation):  ∼  [0 2],  = 1,  = 0001,  = 005,

 = 05,  = 075,  = 1,  = 005,  = 01,  = 0108 and various .

Fig. 3a: Example 3,  = 0018. Fig. 3b: Example 3,  = 0013

Fig. 3c: Example 3, homoclinic orbit Fig. 3d: Example 3,  = 0016.

The first case involves a saddle loop (also called homoclinic) bifurcation. In

Fig. 3a, with  = 0018, the blue stable manifold going to the lower steady state

is inside the pink unstable manifold. In Fig. 3b, with  = 0013, the blue stable

14



manifold is outside the pink unstable manifold. By continuity, for some ∗ ∈
(0013 0018) there exists a homoclinic orbit — i.e., the unstable and stable manifold

coincide — as shown in Fig. 3c. As the middle steady state inside the homoclinic

orbit is a source for these parameters, and any orbit inside the homoclinic orbit

cannot escape, the inescapable conclusion is this: starting inside the homoclinic

orbit the system must go to a cycle. The green curve in Fig. 3d, for  = 0016,

is a trajectory starting near the middle steady state, while the pink curve is the

unstable manifold of the lower steady state, and both approach a limit cycle.

The mechanics of saddle loop bifurcations are clear from the graphs, but more

formally the Andronov-Leontovich theorem says: Consider a system ẋ = (x )

with x ∈ R2 and a parameter  ∈ R1 where  is smooth. Suppose at  = ∗ there

is a steady state ∗ that is a saddle point and has a homoclinic orbit with another

steady state inside it. Under mild regularity conditions (Kuznetsov 2004, Section

6.2), ∀ in a nondegenerate neighborhood of ∗ there exists a neighborhood of the
homoclinic orbit and ∗ in which a unique limit cycle bifurcates from the homoclinic

orbit (i.e., the cycle emerges as  crosses ∗). The theorem also gives conditions

under which cycles are stable or unstable, but the result to emphasize is that they

exist for all  in a nondegenerate neighborhood of ∗ even if the homoclinic orbit

itself exists only at ∗.

Time series from this cycle are shown in Fig. 3e. While the examples are clearly

not meant to be calibrations, only to show possibilities, we mention that with  =

0016 a period corresponds to roughly 1 quarter, giving the cycle a not-unrealistic

duration of about 7 years. In any case, notice entry and volume lead ∆, while

inventories and output lag ∆. Also, the markup (spread) is negatively (positively)

correlated with ∆. We also mention that there is a literature on commodity price

cycles and how they matter especially in emerging markets.14 The cycles in these

14We thank the referee/editor for suggesting this and providing these reference: Reinhart et al.

(2016) document the connection of commodity price and capital flow cycles; Drechsel and Tenreyro

(2018) study the impact of commodity prices on the aggregate economy through improvements

in competitiveness; Fernandez et al. (2020) argue that world disturbances are responsible for low

frequency movements in commodity prices; and Benguria et al. (2024) empirically identify the

wealth and cost channels through which commodity cycles affect the economy.
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discussions generally result from exogenous shocks. We provide a different account:

may be self-fulfilling prophecies.

Fig. 3e: Example 3,  = 0016, Time Series.

Example 4 (Hopf bifurcation, subcritical):  ∼  [0 3],  = 1,  = 00001,

 = 00825,  =  = 1,  =  =  = 05,  = 04 and  = 033.

Fig. 4a: Example 4,  = 00825. Fig. 4b: Example 4,  = 00875.

An alternative approach uses the Hopf bifurcation. There are two kinds, super-

critical and subcritical, both of which are shown below. Fig. 4 is for Example 4,

again with three steady states, and blue (pink) curves showing the stable (unstable)

manifolds. The middle steady state can be a sink or a source. As  increases there

is a Hopf bifurcation at ∗ = 00851 where the trace of the system is 0: for   ∗

the middle steady state is a sink; for   ∗ it is a source. With  = 00825 in
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Fig. 4a, the stable manifold spirals away from an unstable cycle and goes to the

upper steady state, and shown in green is a trajectory spiraling away from the cycle

toward the sink. As  increases above ∗ the sink becomes a source and the cycle

disappears, as shown in Fig. 4b for  = 00875. In this example the bifurcation is

subcritical, meaning a small increase in  around ∗ can cause the system to deviate

away from the middle steady state.

Fig. 4c plots time series with  = 00825. Volume, output and entry by  are

negatively correlated with ∆, while inventories are positively correlated with ∆.

Notice that over the cycle  and  trade with positive probability when ∆  3,

where ̄ = 3 is the upper bound of the support, and do not trade at all when∆  3.

This can be described as recurrent intermediation freezes and thaws. Actually, the

market does not shut down completely during these freezes, since  and  still

trade, but  does not trade with , as they are rationally holding out for better

times.15

Fig. 4c: Example 4 Time Series.

Example 5 (Hopf bifurcation, supercritical):  ∼  [0 2],  = 1,  = 10−5,

 = 2,  = 1,  = 0  = 1,  = 02,  = 06 and  = 03.

15See Gu et al. (2024) and references therein for discussion of market freezes, with a suggestion

that they are interesting and an arguement that it is not easy to get such phenomena in standard

models. We also mention that since  does not trade with  during freezes, Fig. 4c only shows

the markup and spread during thaws.
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Fig 5a: Example 5,  = 0055. Fig. 5b: Example 5,  = 00562.

Fig. 5 is for Example 5, with a bifurcation at ∗ = 00557. In Fig. 5a, with

 = 0055, the middle steady state is a sink and the unstable manifold of the lower

steady state converges to it. As  rises past ∗ the sink becomes a source with

a stable limit cycle around it. In Fig. 5b, with  = 00562, the green curve is a

trajectory spiraling away from the source, converging to a cycle. The unstable

manifolds also converge to a cycle. Fig. 5c plots time series, like Fig. 4c, with a few

differences — e.g., the variability of the markup is smaller, and while there are again

freezes, they are shorter, and the series are smoother. Also, similar to the saddle

loop, with a Hopf bifurcation cycles exist for a set of parameters with positive

measure, not just at the bifurcation point ∗ (Kutznesov 2004, Theorem 3.4).

Fig. 5c: Example 5,  = 00562, Time Series.
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Example 6 (another Hopf bifurcation, supercritical):  = 096,  = 0001,

 = 001,  = 0055,  = 04,  = 095,  = 1,  = 00843,  = 0225,

 = −0014 and  () = 0 if   0, and  () = 05[© (; 1 001) + © (; 2 06)−
©(0; 1 001)−©(0; 2 06)][1− 05© (0; 1 001)− 05© (0; 2 06)] where © denotes
the normal distribution function, if  ≥ 0.

Fig 6a: Example 6,  = 00184. Fig. 6b: Example 6,  = 00185.

Consider one more case, Example 6, to illustrate another point. The key feature

of this case that   0 (the earlier cycles used   0). There are three steady states,

but since the interesting dynamics occur near the lower two, which are very close

together, Fig. 6, only shows the phase diagram around them. There is a bifurcation

at ∗ = 001844. In Fig. 6a, with  = 00184, the middle steady state is a sink and

the unstable manifold of the lower steady state converges to it. As  rises past

∗, as shown in Fig. 6b, the middle steady state becomes a source with a stable

limit cycle around it. This cycle is quite small but it still allows us to conclude

something important: with disperse  we can not only get multiple steady states,

but also limit cycles, with   0.

These findings are summarized as follows:

Proposition 7 With entry by , for   0 and for   0, there exists a subset of

parameters with positive measure such that for all parameters in the subset there

are equilibria with limit cycles.
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In terms of economics, we have shown there are cyclic equilibria due to self-

fulfilling expectations about inventories, trading strategies and seller entry, and

these exist for subsets of parameters with positive measure. The intuition lies in

the strategic complementarity between  and , as in the case of multiple steady

states. When applied to cycles, however, the state variable  and the expectations

of the future path of ∆ complicate entry decisions. As a result, , , , etc. are

not perfectly correlated with ∆, i.e., they may lead or lag ∆.

Our claim is not that actual data are best explained by such cycles in isola-

tion — presumably observations from the real world are driven at least in part by

fundamentals, including shocks to technology, policy, etc. We would suggest this:

when simple, natural models deliver equilibria with endogenous variables fluctu-

ating due to beliefs, it lends credence to the idea that markets in real economies

might be susceptible to similar phenomena. Therefore it is useful to analyze mod-

els to see if they display such phenomena. We think that our model of frictional

markets with inventories and intermediation is natural, even if highly stylized on

some dimensions, and think that the economic ideas are simple, even if some of the

mathematics used to get certain results is not.16

4 Other Issues

Here we explore some applications and alternative specifications. First we discuss

welfare. Then we consider entry by  , instead of , and show that it leads to

uniqueness. Then we ask what changes in discrete time versions of the framework.

Then we provide a version of the model with inventories and without middlemen

that generates similar results, although it might seem less natural. Finally, we

compare in detail this paper with some previous work.

16To end this part of the discussion on a tecnical note, we were asked by the referee/editor if

increasing dispersion in  shrinks or expands the parameter set where the model admits multi-

plicity. The answer is that it can go either way. Consider a mean-preserving spread in Example 4,

by comparing three cases: (a)  = 2; (b)  ∼  [1 3]; and (c)  ∼  [0 4]. For each specification

there is a range of  giving multiplicity. Moving from case (a) to (b) the range narrows, and from

(c) to (d) the range widens.
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4.1 Welfare

In the above specification steady state welfare is =  [ + ( − )1 + 0],

or after inserting the  ’s

 =



E +





Z ∞

∆

( −∆)  () +
 ( − )


∆+  (− ∆)

This includes the surplus when  trades with , when  trades with , and when

 trades with , plus the flow payoff from  minus the loss from depreciation.

Different steady states are distinguished by their ∆. The first term falls with

∆ because the number of meetings between  and  falls. The second term is

ambiguous because while the surplus in these meetings falls the number of meetings

can go either way. The third term is ambiguous for a similar reason. The last term

is ambiguous because the total dividend and depreciated value both increase in ∆.

It is easy to construct examples where  decreases with ∆. This is the usual

intuition that more liquid markets entail higher welfare. However, in Example 5

above, with  = 00562,  increases with ∆. Intuitively, while  perform a real

service, their activity depends on bargaining power, and they may operate even

if it is not socially efficient. Thus, as noted frequently in the literature,  may

be higher or lower with middlemen than without them — e.g., Nosal et al. (2015,

2019), Masters (2007,2008), Farboodi et al. (2019) or Gong and Wright (2024). In

general, it is well known that ranking welfare across steady states in middlemen

models depends on details, including parameter values, so we do not pursue this

further here.

Whether welfare is higher or lower in a cycle than in steady state also depends

on parameters, plus where we start in the cycle. Suppose there are three steady

states. Let ,  and  be welfare in the lower, middle and upper ones,

and let  be welfare in a cyclic equilibrium. In Example 3, if we start at the

highest ∆ then        , and if we start at the lowest ∆ then

       . In Example 5, if we start at the highest ∆ then  

    , while if it starts at the lowest ∆ then       ,

which is the opposite of Example 3. Intuitively, cycles are bad due to recurrent
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drops into low-liquidity states, but if we start in a high-liquidity state, that is good,

and the net result depends on various factors, including discounting.17

4.2 Entry by Middlemen

With endogenous participation by  instead of , the dynamical system is de-

scribed by (4)-(9) with constant , time-varying  and entry condition 0 =

()∆ = . Combining this condition with (8) we get

∆̇ = −

∆

Z ∞

∆

[1−  ()]  +  − + ( + )∆

This is a first-order differential equation, with ∆̇∆  0. Hence, the results are

similar to the version with no entry in Section 2: the unique equilibrium has ∆

constant at its steady state level. Also,

̇ =  −  ( +  + )

∆
−  [1−  (∆)]

∆
− 

which implies ̇  0, so  converges to steady state.

While  adjusts during the transition ∆ does not change, the way payoffs do

not vary in Pissarides (2000) even while unemployment adjusts to steady state (this

is also true in Section 2, but the economics is perhaps more clear here because entry

by  is similar to entry by firms in Pissarides-style models). We can also relate

the results to Rocheteau and Wright (2005), where buyers choose money balances

before entering the market. If seller entry is endogenous, there can be multiple

equilibria, since there is a complementarity between buyer and seller strategies; but

if buyer rather than seller entry is endogenous, there cannot be multiple equilibria

since, heuristically, the same agents make the money holding and entry decisions.

A similar intuition applies here, although the complementarity is now between the

17Since the editor/referee asked for more on this, let0 be welfare with  = 0, including only

the surplus from trade between  and , and consider a case with three steady states. Letting

, and be as in the text, we have: In Example 1,      0. In Example 4

with  = 00825,     0   . There are also examples with   0     .

In Example 5 with  = 00562,       0, which shows that, when  is high, more

inventories and a less liquid market can entail higher welfare. The general point is that welfare

comparisons here are complicated, but that is not a deficiency in theory — in the real world,

intermediated trade in frictional markets is complicated and the models reflect this.
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trading decision of and entry decision of . In any case we summarize the result

as a generalization of Proposition 1:

Proposition 8 Without entry, or with entry by  , equilibrium is unique: there

are no dynamics due to self-fulfilling expectations.

4.3 Discrete Time

Now consider a discrete-time model, with  the meeting probability,  the depreci-

ation probability and  ∈ (0 1) the discount factor. The surpluses are

Σ = , Σ = (1− )∆+1, Σ =  − (1− )∆+1

where again ∆ = 1 − 0. Now  ≡ (1− )∆+1 is the reservation value

satisfying Σ = 0. Prices are as in (2) except  replaces ∆.

Letting  () be as in (3), the discrete-time value functions are

 =




E +




 ()  ( −) + +1 (16)

 =




E +
( − )



 + +1 (17)

0 =




 + 0+1 (18)

1 = +






Z ∞



( −)  () + (1− )1+1 + 0+1 (19)

Subtracting (18) from (19) and simplifying, we get a difference equation analogous

to the differential equation (8),

−1 = (1− )

½
+ +





Z ∞



[1−  ()]  − 





¾
 (20)

Similarly, we get a law of motion analogous to (9),

+1 = (1− )

∙
1− 



E ()
¸
+ (1− )

( − )



 (21)

With no entry, one can check −1  1. Hence (20) has a unique equi-

librium, which is the steady state . Also, +1 ∈ (0 1), so  converges to
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the steady state . Now consider entry by  with a per-period cost, which re-

duces to exactly (10) in the benchmark model. Given initial 0, equilibrium is a

nonnegative, bounded path for ( ) satisfying (20)-(21), written compactly as∙
−1
+1

¸
=

∙
( )

( )

¸


Now the  locus satisfying  =  () and the  locus satisfying  =  ()

both slope up in () space indicating the possibility of multiplicity.

Example 7: The same as Example 1 plus  = 02.

There are three steady states (09007 04213), (1 04421) and (14826 04777),

similar to the continuous time specification. However, the discrete time dynamics

are rather different. Let us focus on a two-cycle, oscillating between a liquid regime

with low  and an illiquid regime with high , denoted
¡
 

¢
and (  ).

These solve ∙




¸
=

∙
( )

( )

¸
and

∙




¸
=

∙
(  )

(  )

¸
 (22)

A solution is
¡
 

¢
= (09800 04511) and

¡
  

¢
= (10065 04297), shown

in Fig. 1b.

Fig. 7: Example 7, Time Series.

Fig. 7 shows the times series. In the liquid regime  is low, making  more

likely to trade with , and  is high because and  traded less last period, while
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 is low because low  and high  discourage entry by . The illiquid regime is

just the opposite.18

Next, consider entry by  , which it will be recalled implied uniqueness in con-

tinuous time. Now (16)-(21) are the same, but  is fixed while  is endogenous.

Now (17) yields  in terms of ,

 =  (23)

From (23),  depends only on , while with entry by  it depends on  and .

Substituting (23) into (20), after some algebra we get −1 =  (), where

 () ≡  (1− )

½
++





Z ∞



[1−  ()]  − 

¾
 (24)

Now −1 depends only on , while with entry by  it depends on  and .

The univariate system −1 =  () determines the path for , from which

we get , , etc. Steady state solves  =  () as long as it implies   ≥ 0,
both of which hold iff  ≥  ≡ ( + ) (we also need  ≤  but

that never binds). A solution to  =  () ≥  is a steady state with  active.

One can check  (0) = ∞, 0 ()  1 and 00 () ≥ 0. Also, ∀  ̄  is linear

with slope  (1− ). This is shown in Fig. 8a, from which it is clear that there

exists a unique fixed point ̂. We can have ̂  ̄, on the linear part of  (), or

̂  ̄, on the nonlinear part. If 0(̂)  −1 then standard methods imply there
are cycles. There is a threshold 1 such that 

0(̂)  −1 iff   1. We now show

that 0(̂)  −1 and ̂ ≤  are possible.

Example 8:  ∼ [0 07],  = 1,  = 001,  = 099,  =  = 1,  = 1,

 = 01,  = 0001, and various .

Fig. 8a depicts  () in Example 8. As  decreases, the slope at steady state

falls. One can check 0(̂)  −1 and ̂   when  = −01. Hence there is a 2-
cycle and possibly cycles of higher order. Fig. 7b plots the second and third iterates,

18Prices are also shown in Fig. 6b. The direct price is constant over time, depending only on

fundamentals, but the wholesale and retail prices move with . The spread can go either way, but

here it moves against . This is all broadly consistent with the data discussed in Comerton-Forde

et al. (2010), and other stylized facts like inventories being more volatile than output. While

this is, again, obviously not a calibration, the finding that it is qualitatively consistent with

observations may lend further credence to the story.
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2 () and 3 (). A fixed point of 2 (3) other than a steady state is a 2-cycle

(3-cycle). As shown, there exist a pair of 3-cycles. The existence of 3-cycles implies

the existence of -cycles ∀ plus chaotic dynamics, by the well-known Sarkovskii
and Li-Yorke theorems

Fig. 8a: Example 8, Different . Fig. 8b: Example 8, 2 and 3 Cycles,  = −01.

The discrete-time model is relatively easy to analyze, and generates interesting

dynamics with entry by  , counter to the main model. However, these equilibria

are not robust: they vanish as the period length shrinks:

Proposition 9 In the discrete-time model with entry by  , where  denotes the

length of a period, there exists   0 such that for all  ∈ (0 ) no cycles exist.

Oberfield and Trachter (2012), Rocheteau and Choi (2021) and Rocheteau and

Wang (2023) in different but somewhat related models show that cycles may occur

in discrete time but they vanish as the period length shrinks. This is what motivated

us to check which results are robust and which are not. While discrete time with

entry by  is quite tractable and delivers some interesting results, one might

worry this is an artifact of the period length. Discrete time with entry by  is

less tractable, but more robust: interesting dynamic equilibria still exist when the

period length shrinks, as Section 3 shows — i.e., working directly with continuous

time we established the existence of cyclic equilibria.
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4.4 Inventories Without Middleman

It turns out that middleman are not strictly necessary for our results; what actually

matters is that there are both entry and inventory decisions. The middlemen

framework is a natural way to capture this, with entry decisions by  and trading

decisions by  . Still, an environment can be rigged with no type  , so  and 

must trade directly, but now  has the option to consume  for payoff  or store it

for return , which plays the role of  ’s option to trade  or store it in the main

model. One can interpret storage by  as savings, as opposed to consumption.

This inventory/savings option is only viable when   0, which is a reason one

might prefer the specification with  . In any case, the purpose of this extension

is to show it is possible to get similar results without , even if the model with

seems better on some dimensions.

As usual ’s payoff is match specific,  ∼  (), and  and  trade as long

as   0. If  chooses not to consume , it is inventoried for flow return  and

depreciates at rate . Assume for simplicity that if  decides to store  the decision

is irreversible — it is not possible to later consume it and go back on the market, so

 is off the market until  depreciates. This restriction does not bind in, but could

bind out of, steady state. While it is not especially natural, it lets us make the

point relatively easily. Note that no such restriction is needed in the model with

 , which may be another reason to prefer that version.

Normalize the measure of  to 1, and let  enter the market by paying .

Let , 0 and 1 be the value functions of ,  without inventory and  with

inventory. When trading with , if  inventories  the surplus is ∆ = 1−0, and

if  consumes  the surplus is . Then  consumes  if  exceeds the reservation

value  = ∆. Let  be ’s bargaining power. Then

 =
 (1− )

1 + 
(1− )

∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇

0 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇0

1 = − ∆+ ̇1
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This leads to

∆̇ = ( + )∆− +


1 + 


½
∆+

Z ̄

∆

[1−  ()] 

¾


after integration by parts. The law of motion for inventories is

̇ = −+  (1− )

1 + 
 (∆)

and the entry condition by  implies

 (1− )

1 + 
(1− )

½
∆+

Z ̄

∆

[1−  ()] 

¾
= 

Consider first a degenerate distribution of . That leads to

∆̇ = ( + )∆− +


1 + 
 [ + (1− )∆]

̇ = −+  (1− )

1 + 
(1− )

 =
 (1− )

1 + 
(1− ) [ + (1− )∆]

where  denotes ’s probability of consuming . In terms of steady state, there

are three regimes where   0 (i.e., where the market does not shut down),  = 1,

 = 0 and  ∈ (0 1), plus a regime with  = 0. In the Appendix we construct the
set of parameters that make  a best response to itself, and check whether   0,

 = 0 or  ∈ [0 1].
Example 9:  = 01,  = 001,  = 1,  = 073,  = 001, various  and .

The results are shown in Fig. 9a, partitioning parameter space into 4 regions

that support the different regimes. The pattern is general, and its properties are

derived as Claim 1 in the Appendix, while the picture is drawn for the specification

in Example 9. In the gray area  = 0, so the market shuts down. Otherwise,

  0 and: in the blue region  = 1 since  is high relative to ; in the brown

region  = 0 since  is low relative to ; in the green region there are three steady

states,  = 0,  = 1 and  ∈ (0 1). Hence multiple steady states can exist, as in
the main model, with  , with a similar intuition: if  is high  is often without
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, making it easier for  to trade, making  big and  more inclined to consume

; but if  is low, and so on.

Fig. 9a: Regions/regimes without  . Fig. 9b: Regions/regimes with  .

If Fig. 9a is useful, Fig. 9b provides a similar picture for the model with  ,

drawn for Example 1 in Section 3. However, the interpretation is: here  and 

always trade;  and  do not trade in the grey area and trade in other regions;

and those other regions differ in the probability  that  trades with . We did

not draw this graph earlier because deriving the regions with three types is more

cumbersome — Fig. 9b is done numerically — and because these pictures are only

relevant for degenerate , while the preferred specification has disperse . Still, the

figures are remarkably similar, and Fig. 9b nicely tightens a loose end in Section 3,

where it was simply assumed that  is above some lower bound to guarantee 

and  trade; now the boundary of grey area tells us just how low  can go before 

and stop trading. More generally, these pictures indicate that steady state exists

for all parameters, although for some parameters certain agents stop trading.

Example 10:  = 03,  = 031,  = 048,  = 05, 1 = 001, 2 = 049, 3 = 05,

 = 046,  = 0046,  = 1,  = 075,  = 001 and  = 01

Going beyond steady state, the model without  also has cyclic equilibria. As

 varies in Example 10 there is a Hopf bifurcation at ∗ = 00174. Fig. 10a shows

 = 0015, where there are four steady states with the lowest being a sink, and the

unstable manifold of the next lowest steady state converges to the lowest one. As
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 increases past ∗ the sink becomes a source, with a stable limit cycle around it.

Fig. 10b shows the case with  = 0020, with the green curve showing a trajectory

spiraling away from the source and converging to a cycle. The unstable manifold

also converges to a cycle. Since cycles emerge when  increases, ∗is supercritical.

Fig. 10a: Example 10,  = 0015. Fig. 10b: Example 10,  = 0020.

We can again check the general intuition, offered above, that multiplicity and

cycles emerge when agents on one side make an inventory decision while those on

the other side make an entry decision. The Appendix considers a version without

 , where  makes both entry and inventory decisions, and proves as Claim 2 that

equilibrium is unique. It also considers a version without  , where  makes both

entry and inventory decisions and proves as Claim 3 that equilibrium is unique.

These results are consistent with intuition.

To summarize, clearly we cannot claim that middlemen are necessary for our

results — we just showed that what one really needs are inventories combined with

certain entry decisions. Our claim is that models of intermediated trade are a

natural way to think about inventories, and that provide an interesing connection

from middlemen to multiplicity and endogenous dynamics.

4.5 A Comparison

Here we compare our paper to one that is close in some respects, Nosal et al. (2019),

hereafter NWW.19 While NWW also have sellers , middlemen  , and buyers ,

19This discussion was suggested by the editor/referee as a way to highlight our contribution.
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there are many differences in the details that matter for the economics and for

the mathematics.20 For present purposes, the most important difference is this:

in NWW  is constant, while we have a distribution of valuations  (). With

degenerate , in dynamic equilibria, at any point in time either  and  for sure

trade or for sure do not trade except for the knife-edge case ∆ =  — this is what

is mean by a bang-bang solution. That leads to problems:

• Multiplicity is possible only for   0.

• If there are multiple steady states, there must be one above, one below, and
one on the horizontal line as Fig. 1a, reproduced here for convenience, in a

stylized way, as Fig. 11a. For comparison, in our model, when there are three

steady states, the situation looks like Fig. 11b.

Fig. 11a: NWW Fig. 11b: GWW

The point to emphasize is that in our model the question is not if  sells to ,

but when  sells to , depending on the realized match-specific valuation . As

shown above, the optimal stopping rule is a reservation strategy:  and  trade

when  ≥ , where  is a smooth function of exogenous and endogenous variables.

This implies:

20There too many differences to list them all, but in addition to what is emphasized in the

text, we mention that in our model, as is standard in search theory, a key ingredient is entry by

. NWW do not have entry but let agents choose their occupation, or , which is problematic

for several reasons. One is that in their setup, in dynamic equilibrium, some agents are contin-

uously changing occupations; here agents never change occupations (types) but participate rates

fluctuate. Another is that in their setup  +  + is fixed, while we find it interesting to have

the size of the market endogenous.
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• Multiple steady states and cycles are possible for   0 and for   0.

• We can apply bifurcation theory to our dynamical system.

• In particular, NWW do not prove anything about the existence of cycles. As

they say “Whether [an example they consider] converges to steady state, or to

a small cycle around it, is hard to say from the numerical output, and checking

local stability directly is hindered by the [system] being nondifferentiable.”

In contrast, we prove the existence of cyclic equilibria for sets of positive

measure in parameter space.

5 Conclusion

This paper studied dynamic models of inventories, focusing on intermediated trade,

heterogeneous buyer valuations, and endogenous entry. We showed there are mul-

tiple steady states and endogenous cycles, where entry, liquidity, prices and other

endogenous variables fluctuate. This is driven by strategic considerations, not in-

creasing returns, or the self-referential nature of acceptability, as in some other

models. We analyzed discrete- and continuous-time specifications. In some cases

(entry by middlemen) discrete time was tractable and gave interesting results, but

they are not robust to period length; in other cases (entry by sellers), cyclic equi-

libria are possible in discrete and continuous time.

As mentioned above, the relevance of the findings is this: while it may be hard to

account for data based purely on self-fulfilling prophecies, when simple and natural

models display such outcomes, it may make one more inclined to think that actual

economies can, too. This is consistent with Diamond’s (1982b) view, but to get the

desired results he needed increasing returns, which he called an externality. As he

said, “this externality involves positive feedback: increased production for inventory

makes trade easier; easier trade makes production for inventory more profitable and

therefore justifies its increase. This positive feedback... implies the possibility of

multiple equilibria.” His models do not capture inventory behavior the way we do
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— there are no middlemen — but, interpreted broadly, the spirit is similar.

One might say that when strategic considerations that arise naturally with in-

termediation are introduced, we can dispense with increasing returns and still get

multiplicity and complicated dynamics. To put this in context, Diamond (1984)

got money into his framework with a CIA (cash-in-advance) restriction, and again

increasing returns led to multiplicity. Subsequent developments showed that mod-

eling the microfoundations in more detail means the CIA constraint is not needed to

get valued fiat currency, and that further implies increasing returns are not needed

to get natural multiplicities and dynamics in monetary economics, as emphasized

by, e.g., Kiyotaki and Wright (1993) or Johri (1999). What we think is a general

conclusion is that markets with frictions are prone to volatility or instability, in the

sense that there can be multiple steady states and cyclic dynamic equilibria arising

as self-fulfilling prophecies. This is well know in monetary models. Our results

show that real models with inventories have similar properties.

In other words, once the exchange process is modeled in more detail, and ex-

change is not as simple as it is in Diamond’s early work, where everyone always

wants to trade with everyone else, there is a role for institutions that facilitate this

process. Two such institutions are money and middlemen. Once they are modeled

explicitly, one can dispense with mechanical assumptions like increasing returns

and still get interesting results. We find it interesting that money and middlemen

are similar in that regard.
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Appendix

Proof of Proposition 2: First notice that, with  = ̄, (8) and (9) reduce to

( +  + )∆− −  (̄ −∆) +  ( + ) ∆


= 0 (25)

+



− ( − )

µ
1−  + 



¶
= 0 (26)

where  = [̄ +  ( − ) ∆] . In the region where ∆  ̄, with

 = 0, we combine (25) and (26) to eliminate  ,µ
 +  +



 − 

¶
∆ =  (27)

This implies

∆


= − ∆

( − )
2
( + ) + ( − ) 

 0

This transforms (25)-(26) to an equivalent system (26)-(27). As (27) is downward

sloping and (26) upward sloping, there is at most one steady state with ∆  ̄.

Also, from (27), steady state exists in this region only if   0.

In the region where ∆  ̄, with  = 1, we combine (25) and (26) to get

( +  + )∆ = +
 (̄ −∆) + ( + ) ∆

 ( +  − )
[ ( − )− ] 

This implies

∆


= −  (̄ −∆) + ( + ) ∆

 +  +
[+(+)]+[(−)−]

(+−)

 ( + ) + 

 ( +  − )
2
 0 (28)

Again, since (28) is downward and (26) upward sloping, there is at most one steady

state with ∆  . Similarly, when ∆ = ̄ and  ∈ (0 1), the  locus is flat and ∆

locus upward sloping. Hence, there again is at most one steady state.

For existence, it is easily verified that ∆ and  loci are upward sloping and the

∆ locus is flatter than the  locus in regions where ∆ 6= ̄. Also, the ∆ locus shifts

up when  increases. For  = −, the ∆ locus goes through the origin. For

  −, the ∆ locus has a positive intercept. At  = , ∆ is positive

and finite on the ∆ locus. The  locus goes through ( 0), where

 ≡ 

µ
1−  + 

̄


¶


∙
 +



̄
+ 

µ
1−  + 

̄


¶¸

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strictly first increases, then becomes flat and goes to∞ as  goes to  (+ ) 

. Hence the loci have at least one intersection. In particular, if there is a steady

state at ∆ = ̄, there are two more steady states, one with ∆  ̄ and one with

∆  ̄. As  shifts the ∆ locus, there exist ̃ ̂ ≥ 0 with the stated properties. ¥
Proof of Proposition 3. Suppose  buys  from  and does not sell it to . If

  0 this strategy has a negative payoff, which is dominated by not buying . ¥

Proof of Proposition 4. Suppose instead there is a steady state where ∆ ≥ ̄.

By (8), ∆̇ = 0 implies ( +  + )∆ =  The LHS is positive while the

RHS is negative. A contradiction. ¥
Proof of Proposition 5. We prove by the intermediate value theorem. Let

∆ () |∆̇=0 and ∆ () |̇=0 denote the ∆ and  loci, respectively.

First, substitute  = 0 into  (0∆) = 0 to solve ∆ (0) |∆̇=0:

0 = − 

E + ∆

Z ∞

∆

[1−  ()]  (29)

− [( + ) −  (E +∆)] 

E
∆

+ 
− + ( + )∆

By (10), for  to be positive in equilibrium, we have

( + )   (E + ∆) (30)

So the RHS of (29) is increasing in ∆. The RHS at ∆ = 0 equals − − .

If   −, the solution to (29) must entail ∆  0. That is, ∆ (0) |∆̇=0  0.
Next, we show ∆ () |∆̇=0 is bounded. Note that  (∞) =∞ 6= 0. Therefore,

∆ = ∞ cannot be part of the ∆ locus. It follows that ∆ () |∆̇=0  ∞ for any

 ∈ [0 ].
Next, check ∆ () |̇=0. Substitute  = 0 into  (∆) = 0 to solve ∆ (0) |̇=0:

0 = − ( + )

E + ∆

By (30), ∆ (0) |̇=0  0. This implies that the  locus has a positive intercept on

the  axis. Substitute ∆ =∞ into  (∆) = 0 to get

0 =  ( − )− 
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which results in  = ̂ ≡  ( + )  . That is, ∆ (̂) =∞.
As∆ () |∆̇=0 and∆ () |̇=0 are continuous,∆ (0) |∆̇=0  ∆ (0) |̇=0 and∆ (̂) |∆̇=0 

∆ (̂) |̇=0, by the intermediate value theorem, there are generically an odd number
of intersections in  ∈ (0 ̂).
Furthermore, there does not exist any steady state with∆ ≤ 0 if   −.

It is obvious that if 1  0, the middlemen should dispose of , so ∆ cannot

be negative. Suppose ∆ = 0. Then 0 = 0 by (6). If a middleman holds ,

1 =  +   0, which contradicts ∆ = 0. Therefore, there does not exist

any steady state with ∆ ≤ 0. ¥
Proof of Proposition 6. The Jacobian matrix is:

 =

∙
∆̇∆ ∆̇

̇∆ ̇

¸
where

∆̇

∆
=

2

2
( − )

∙


Z ∞

∆

[1−  ()]  + ( + )∆

¸
+




[1−  (∆)] +




 + ( + )  0

∆̇


= − 2

2
∆

∙


Z ∞

∆

[1−  ()]  + ( + )∆

¸
 0

̇

∆
=

2

2
{( + )( − ) + [1−  (∆)]} ( − ) +




(∆)  0

̇


= −


−  − 2

2
{( + )( − ) + [1−  (∆)]} ∆  0

Totally differentiating, we obtain ∆


¯̄̄
∆̇=0

=
−∆̇

∆̇∆
and ∆



¯̄̄
̇=0

=
−̇
̇∆

. If

∆


¯̄̄
∆̇=0

 ∆


¯̄̄
̇=0

then

−∆̇

∆̇∆

−̇
̇∆

⇒−∆̇


̇

∆
 −∆̇

∆

̇




which means

()|(∆̄̄) =
∆̇

∆

̇


− ∆̇



̇

∆
 0

This implies that 12  0, where 1 and 2 are the two eigenvalues of  at this

steady state, meaning that there must be one positive and one negative. Therefore

the steady state is a saddle point.
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Similarly, if ∆
¯̄̄
∆̇=0

 ∆
¯̄̄
̇=0

then 12  0, meaning the two eigenval-

ues are either both positive or are complex conjugates. Combined with the phase

diagram, this establishes that the steady state is a spiral. The stability of the spiral

is determined by

()|(∆̄̄) =
∆̇

∆
+

̇


= 1 + 2

Since ∆̇∆  0 and ̇  0, it can be a source or a sink, as our examples

show. ¥

Proof of Proposition 9. Let the length of a period be . Then , , ,  and

 are functions of . As usual, let:

 = lim
→0

 ()
−1 − 1


,  = lim
→0

 ()


,  = lim

→0
 ()


,  = lim

→0
 ()


,  = lim

→0
 ()



The equilibrium condition can be rewritten − =  ( ), where

 (;) ≡  () [1−  ()]

½
 () ++

 ()



Z ∞



[1−  ()]  −  ()

¾


(31)

As → 0, this converges to the continuous-time model.

First we show steady state is unique. From (31) we get




=  () [1−  ()]

½
1 +

 ()



∙
−1 +  ()− 1



Z ∞



[1−  ()] 

¸¾


(32)

As the term in square brackets is negative,    () [1−  ()]  1 ∀, so
 crosses the 45 line at most once: if it exists steady state is unique. With ̂ ()

denoting steady state as a function of period length, it solves  =  ( ), which

we rearrange as

2 [1−  ()−  ()  ()]

=  () [1−  ()]

½
[ ()−  ()]+

 ()



Z ∞



[1−  ()] 

¾


For any   0, the LHS is 0 at  = 0 and the RHS is strictly positive at

 () = 0. Hence ̂ ()  0 ∀  0. Dividing by  we get

2
1−  ()−  ()  ()



=  () [1−  ()]

½
 ()−  ()


+

 ()







Z ∞



[1−  ()] 

¾

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As  → 0, the LHS approaches 2 ( + ) and the RHS approaches (− ) +





R∞

[1−  ()] . At  = 0, the LHS is 0 and the RHS is strictly positive.

Hence, ̂ (0) 6= 0. Finally, evaluate (32) at  = 0 and ̂ (0) to get lim→0 ̂0 =

1. By the continuity of , there exists a cutoff   0 such that ̂ ()  −1
for    implying a 2-cycle, and ̂ () ≤ −1 otherwise. As is standard, if a
2-cycle does not exist, no cycles of any order exists. ¥

Proof of Claim 1: As discussed in the text there are 4 cases. We consider each

in turn.

Case 1:  = 1 and   0. For  = 1 we need   ∆, which easily reduces to

 ≥ 1 () ≡ +  (1− )

 +  + 
(33)

Given  = 1,  = 0. Finally,   0 reduces

 ≥ 

 (1− )
≡ 0 (34)

Case 2:  = 0 and   0. Now  = 0 requires ∆ ≥ , which reduces to

  max {2 ()  3 ()} (35)

where 2 () ≡  ( +  + ) and

3 () ≡  (1− ) (− )− 

2 (1− )  ( +  + )

+

©
[ (1− ) (− )− ]

2
+ 4 (1− ) ( +  + )

ª05
2 (1− )  ( +  + )



Notice 3 is increasing, concave, 3 (0) = 0 and 3 (0) = 0 where 0 is given

in(34). Then  ≥ 0 reduces to

 
 ( + )

 (1− )
≡ 0 (36)

We also need  ≤ 1 and   0 but these are redundant given the other conditions.
Case 3:  ∈ (0 1) and   0. For  ∈ (0 1) we solve for ∆ =  for  and

check that 0 ≤  ≤ 1 holds iff  ≥ 1 () and 0    1 iff   3 (), which

also guarantees   0. Notice that when two pure-strategy steady states exist, as

usual, the mixed-strategy steady state does, too.
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Case 4:  = 0. We need  ≤  which reduces to a simple parameter condition.

Here obviously  = 0 so we only need to check the best response condition for ,

even if it is only relevant off the equilibrium path, since  = 0 means  never

actually gets to decide to consume or store  in equilibrium. For any  ∈ [0 1],
∆ =  ( + ) as ’s trading probability is 0. For  = 1, ∆   iff    ( + )

and  ≤  iff  ≤ 0. For  = 0, ∆   iff   ( + ) and  ≤  iff  ≤ 0.

For  ∈ (0 1),  =  ( + ) and  ≤  iff  ≤ 0. Altogether,  = 0 holds iff

 ≤ 0 and  ≤ 0. ¥

Proof of Claim 2: Consider the model without  where  decides whether to

enter and whether to consume or store . We have

 =
 ( − )

1 + 
(1− )

∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇

0 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇0

1 = − ∆+ ̇1

Following the usual procedure, we get

∆̇ = ( + )∆− +


1 + 


½
∆+

Z ̄

∆

[1−  ()] 

¾
̇ = −+  ( − )

1 + 
 (∆)

 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
Again, using the third equation to eliminate  from the others we have a bivariate

system

In particular, the entry condition implies

∆̇ = ( + )∆− + 

which has a unique bounded solution, the steady state, ∆ = (− )  ( + ). Then

 =





∙Z 

0

∆ () +

Z ̄



 ()

¸
− 1

is also a constant, in and out of steady state, while inventories converge to steady

state following the ̇ equation. Hence there is a unique equilibrium. ¥
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Proof of Claim 3: Now suppose  decide whether to produce for themselves at

cost  and enjoy , or enter the market and produce when they meet  at the same

cost , or not produce. Let 0 and 1 be the value functions of  without and with

inventory, and  the value of  in the market. Let  be the total measure of

sellers and  those in the market. For simplicity, suppose  is degenerate. Then

0 = max {1 −   0}
1 = −  (1 − 0) + ̇1

 =


 + 
 [ − − ( − 0)] + ̇

Now we can proceed as in Claim 1 and consider four regimes, although now we do

not restrict attention to steady state.

Case 1: All sellers enter. That requires 0 =   1 −  and  = . There is a

unique solution

 =


 ( + )
(− ) and 1 =

+ 

 + 
,

and this is an equilibrium for parameters satisfying    and

 ≤ 1 () ≡ 

 +

+

µ
 +  − 

 +

¶


Case 2: All sellers produce for themselves. That requires 0 = 1 −  ≥  and

 = 0. There is again a unique solution

1 =
− 


and  =



 + 
(− 2+ 1)

and this is an equilibrium for parameters satisfying  ≥ 2 () ≡ +( +  − ) 

and   ( + ) .

Case 3: Some sellers produce and hold inventory, and others enter the market.

That requires 0 =  = 1 −  and  ∈ (0 ). The unique solution is

1 =
− 


,  =

− ( + ) 


, and  =

 (− )

− ( + ) 
− 

and this is an equilibrium for parameters satisfying 1 ()    2 ().
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Case 4: Sellers do not produce. That requires 0 = 0, 1 −   0,   0 and

 = 0. The unique solution is

1 =


 + 
and =

 (− )

 + 

and this is an equilibrium for parameters satisfying   ( + )  and   . This

completes all the cases, and implies uniqueness. ¥
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