OTC Market Theory

Lecture 1 by Pierre-Olivier Weill

UCLA economics

Lecture 2 by Ben Lester (next week)

Federal Reserve Bank of Philadelphia

January 19, 2022

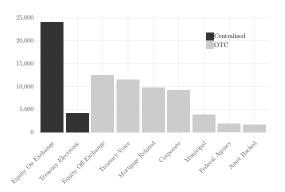
OTC: decentralized security markets

• In contrast to all-to-all continuous auction:

trade is fragmented in small groups price setting involves a form of bargaining information about past transactions is often incomplete

• Most fixed income, part of equity, some derivatives

OTC markets are large



- 2018, Billion of 2019 USD, main data source is SIFMA
- Since then, some convergence:
 more off exchange for equity, more electronic for OTC

OTC markets raise policy questions

Price transparency
 early 2000s

Market resiliency and systemic risk
 after the Great Financial Crisis

Unintended consequence of banking regulations
 onset of COVID-19 crisis

a rich theoretical toolbox

Search theory

for dynamics, many price setting mechanisms, and GE

Network theory

for strategic interactions

• Ben Lester and I will focus on search

a brief ancestry of the search approach

- Demsetz (68) discussed the "demand for immediacy"
- Several papers in market micro structure followed

```
Garman (75), Garbade-Silber (76), Amihud-Mendelson (80)
```

- Search theory took off in the 1980s
 - but not much on security markets!
 - Bhattacharya-Hagerty (87), Spulber (96), Hall-Rust (03)

what I will do today

• A benchmark model of over-the-counter market

Duffie-Gârleanu-Pedersen (05) and Hugonnier-Lester-Weill (21)

 Asset prices and liquidity in one particular market structure semi-centralized OTC market

investors' preferences

- [0,1] of infinitely-lived risk-neutral investors, discount rate r>0
- Can hold $q \in \{0, 1\}$ of some asset in supply $s \in (0, 1)$
- Enjoy flow utility δ for the asset

```
changes with Poisson intensity \gamma
new \delta' drawn according to CDF F(\delta) on [0,1]
type changes iid across investors
for simplicity: initial cross-sectional distribution = F(\delta)
```

• What does δ means?

belief, hedging, consumption opportunities

Duffie-Gârleanu-Pedersen (02,07), Vayanos-Weill (08)

Hugonnier (13), Praz (15), Geromichalos-Herrenbrueck (16)

investors' objective

Given risk-neutrality

we can substitute budget constraint into objective

• We obtain the intertemporal utility

$$\mathbb{E}\left[\int_0^\infty e^{-rt} \left\{ \delta_t q_t \, dt - P_t \, dq_t \right\} \, \middle| \, \delta_0 = \delta \right].$$

where

 $q_t \in \{0,1\}$ is the investor's asset holding at time t P_t is the price at which the investor trades at t

related specifications in the literature

- Duffie-Gârleanu-Pedersen (05) ${\rm a \ special \ case \ when} \ F(\delta) \ {\rm has \ two \ atoms}, \ \delta_L < \delta_H$
- Gârleanu (09) and Lagos-Rocheteau (09)

q is unrestricted with general utility flow $u(\delta, q)$ our setup obtains when $u(\delta, q) = \delta \min\{q, 1\}$

• Suppose investors can trade continuously at P

$$\mathbb{E}\left[\int_0^\infty e^{-rt}\left\{\delta_t q_t dt - P dq_t\right\} \middle| \delta_0 = \delta\right]$$

• Suppose investors can trade continuously at P

$$P_0 q_0 + \mathbb{E}\left[\int_0^\infty e^{-rt} q_t \left\{\delta_t - rP\right\} dt \,\middle|\, \delta_0 = \delta\right]$$

... after integration by part,

• Suppose investors can trade continuously at P

$$P_0 q_0 + \mathbb{E}\left[\int_0^\infty e^{-rt} q_t \left\{\delta_t - rP\right\} dt \,\middle|\, \delta_0 = \delta\right]$$

... after integration by part, hence

$$q_{t} = \begin{cases} 1 & \text{if } r P < \delta_{t} \\ \in \{0, 1\} & \text{if } r P = \delta_{t} \\ 0 & \text{if } r P > \delta_{t} \end{cases}$$

 \Rightarrow market clearing condition is $1 - F(rP) \le s \le 1 - F(rP)$

• Suppose investors can trade continuously at P

$$P_0 q_0 + \mathbb{E}\left[\int_0^\infty e^{-rt} q_t \left\{\delta_t - rP\right\} dt \,\middle|\, \delta_0 = \delta\right]$$

... after integration by part, hence

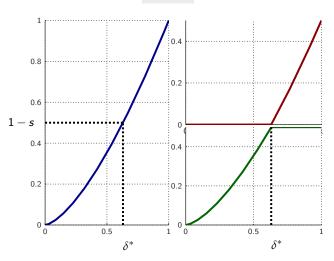
$$q_{t} = \begin{cases} 1 & \text{if } r P < \delta_{t} \\ \in \{0, 1\} & \text{if } r P = \delta_{t} \\ 0 & \text{if } r P > \delta_{t} \end{cases}$$

- \Rightarrow market clearing condition is $1 F(rP) \le s \le 1 F(rP)$
- ⇒ equilibrium price is

$$P = \frac{\delta^*}{r}$$
 where $1 - F(\delta^* -) \le s \le 1 - F(\delta^*)$

the equilibrium in a picture

$$P = \frac{\delta^*}{r}$$



price vs. buy and hold utility

$$U(\delta) \equiv \mathbb{E}\left[\int_0^\infty e^{-rt} \delta_t \, dt \, \middle| \, \delta_0 = \delta\right] = \frac{r}{r+\gamma} \frac{\delta}{r} + \frac{\gamma}{r+\gamma} \frac{\mathbb{E}\left[\delta'\right]}{r}$$

- Investor starts at δ and then reverts to $\mathbb{E}\left[\delta'\right] = \int \delta' dF(\delta')$ $\frac{r}{r+\gamma}$: disc fraction of time with δ $\frac{\gamma}{r+\gamma}$: disc fraction of time after reversion to $\mathbb{E}\left[\delta'\right]$
- When $s\simeq 0$, $P\simeq 1/r$ is greater than $U(\delta)$ for all δ larger than the buy-and-hold valuation of all investors! why? b/c of the option to re-trade

semi centralized market

the market structure

Risk-neutral dealers

```
flow utility \delta=0 for the asset have access to a centralized inter-dealer market
```

• Investors must trade through dealers

```
contact dealer with Poisson intensity \lambda Nash bargain over the terms of trade bargaining power \theta \in [0,1] for dealer
```

An accurate description of many OTC markets

```
e.g. corporate bonds: all-to-all trading small Hendershott, Livdan, Schürhoff (21)
```

HJ Bellman equation (1)

$$rV_1(\delta) = \delta + \gamma \int \left[V_1(\delta') - V_1(\delta)\right] dF(\delta') + \lambda \max \left\{V_0(\delta) - V_1(\delta) + B(\delta), 0\right\}$$

$$rV_{1}(\delta) = \delta + \gamma \int \left[V_{1}(\delta') - V_{1}(\delta) \right] dF(\delta') + \lambda \max \left\{ V_{0}(\delta) - V_{1}(\delta) + B(\delta), 0 \right\}$$

$$rV_{0}(\delta) = \gamma \int \left[V_{0}(\delta') - V_{0}(\delta) \right] dF(\delta') + \lambda \max \left\{ V_{1}(\delta) - V_{0}(\delta) - A(\delta), 0 \right\}$$

HJ Bellman equation (1)

$$rV_1(\delta) = \delta + \gamma \int \left[V_1(\delta') - V_1(\delta) \right] dF(\delta') + \lambda \max \left\{ V_0(\delta) - V_1(\delta) + B(\delta), 0 \right\}$$
$$rV_0(\delta) = \gamma \int \left[V_0(\delta') - V_0(\delta) \right] dF(\delta') + \lambda \max \left\{ V_1(\delta) - V_0(\delta) - A(\delta), 0 \right\}$$

Notice the option to re-trade!

HJ Bellman equation (1)

$$rV_{1}(\delta) = \delta + \gamma \int \left[V_{1}(\delta') - V_{1}(\delta) \right] dF(\delta') + \lambda \max \left\{ V_{0}(\delta) - V_{1}(\delta) + B(\delta), 0 \right\}$$

$$rV_{0}(\delta) = \gamma \int \left[V_{0}(\delta') - V_{0}(\delta) \right] dF(\delta') + \lambda \max \left\{ V_{1}(\delta) - V_{0}(\delta) - A(\delta), 0 \right\}$$

Notice the option to re-trade!

How is the buying "ask" price, $A(\delta)$ determined?

• Investor's net utility is a fraction $1-\theta$ of surplus

$$\Rightarrow A(\delta) = (1 - \theta)P + \theta \underbrace{[V_1(\delta) - V_0(\delta)]}_{\text{reservation value}}$$

HJ Bellman equation (2)

• Define reservation value $\Delta V(\delta) \equiv V_1(\delta) - V_0(\delta)$

$$r\Delta V(\delta) = \delta + \gamma \int \left[\Delta V(\delta') - \Delta V(\delta) \right] dF(\delta') + \lambda (1 - \theta) \left[P - \Delta V(\delta) \right]$$

- As-if trade directly in interdealer market but with bargaining-adjusted intensity $\lambda(1-\theta)$
- Option value to re-trade

increases
$$\Delta V(\delta)$$
 for seller, $P>\Delta V(\delta)$ decreases $\Delta V(\delta)$ for buyers, $P<\Delta V(\delta)$

• Take derivatives: $\frac{d}{d\delta}\Delta V(\delta) = \frac{1}{r + \gamma + \lambda(1 - \theta)} > 0$

market clearing

The easy way: equate gross asset supply and demand

- flow of assets brought to the market per unit of time:
 - λs because contact independent from everything
- flow of investors who leave the market with one unit:

$$\lambda \left[1 - F(\delta^{\star})\right]$$
 , where $\Delta V(\delta^{\star}) = P$

• Market clearing equation is the same as in centralized market! same marginal investor δ^{\star} but different price

From Bellman equation we can re-write reservation value "in sequence"

$$\Delta V(\delta) = \mathbb{E}\left[\int_0^{\tau} e^{-rt} \delta_t \, dt \, \middle| \, \delta_0 = \delta\right] + \mathbb{E}\left[e^{-r\tau}\right] P$$

where $\tau \sim \exp$ with $\lambda(1-\theta)$,

From Bellman equation we can re-write reservation value "in sequence"

$$\Delta V(\delta) = \mathbb{E}\left[\int_0^{\tau} e^{-rt} \delta_t \, dt \, \middle| \, \delta_0 = \delta\right] + \mathbb{E}\left[e^{-r\tau}\right] P$$

where $\tau \sim \exp$ with $\lambda(1-\theta)$, for marginal investor $\Delta V(\delta^*) = P$ so:

From Bellman equation we can re-write reservation value "in sequence"

$$\Delta V(\delta) = \mathbb{E}\left[\int_0^{\tau} e^{-rt} \delta_t \, dt \, \middle| \, \delta_0 = \delta\right] + \mathbb{E}\left[e^{-r\tau}\right] P$$

where $\tau \sim \exp$ with $\lambda(1-\theta)$, for marginal investor $\Delta V(\delta^{\star}) = P$ so:

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{*}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{t} = \delta^{*}$$

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0, \tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

• Buy-and-hold utility as $\lambda(1-\theta) \to 0$, centralized as $\lambda(1-\theta) \to \infty$

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

- Buy-and-hold utility as $\lambda(1-\theta) o 0$, centralized as $\lambda(1-\theta) o \infty$
- May either increase of decrease with $\lambda(1-\theta)$

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

- Buy-and-hold utility as $\lambda(1-\theta) o 0$, centralized as $\lambda(1-\theta) o \infty$
- May either increase of decrease with $\lambda(1-\theta)$ option to re-trade larger for seller: tends to <code>increase</code> price

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

- Buy-and-hold utility as $\lambda(1-\theta) o 0$, centralized as $\lambda(1-\theta) o \infty$
- May either increase of decrease with $\lambda(1-\theta)$ option to re-trade larger for seller: tends to <u>increase</u> price option to re-trade larger for buyer: tends to <u>decrease</u> price

$$P = \frac{1}{r} \times \underbrace{\frac{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} \delta_{t} dt \middle| \delta_{0} = \delta^{\star}\right]}{\mathbb{E}\left[\int_{0}^{\tau} e^{-rt} dt\right]}}_{\text{avg disc type in } [0,\tau] \text{ starting from } \delta_{0} = \delta^{\star}$$

- Buy-and-hold utility as $\lambda(1-\theta) o 0$, centralized as $\lambda(1-\theta) o \infty$
- May either increase of decrease with $\lambda(1-\theta)$ option to re-trade larger for seller: tends to <u>increase</u> price option to re-trade larger for buyer: tends to <u>decrease</u> price
- Net effect: which option is more valuable for marginal investor? prices increase with $\lambda(1-\theta)$ if $\delta^\star>\mathbb{E}\left[\delta'\right]$

liquidity measures

- Volume
- Liquidity yield spread
- Bid-ask spread

assume for simplicity a continuous CDF $F(\delta)$

volume

Centralized market:

each instant, a flow γ of asset holders switch to $\delta < \delta^{\star}$:

$$\mathsf{volume} \ = \gamma \mathsf{sF}(\delta^\star)$$

Semi-centralized market:

search frictions cause volume to be lower:

volume
$$=\frac{\lambda}{\lambda+\gamma}\gamma sF(\delta^{\star})$$

liquidity yield spread

- Assume centralized-market price $\frac{\delta^*}{r}$ is PV of cash flows
- The liquidity yield spread ℓ is such that $P = \frac{\delta^*}{r + \ell}$ $\frac{\ell}{r + \ell} = \frac{\gamma}{r + \gamma + \lambda(1 \theta)} \left(1 \int \frac{\delta'}{\delta^*} \, dF(\delta') \right)$
- Non-zero even if $\theta = 0$, can be positive or negative
- If positive:
 - decrease with λ increases with θ
 - increases with γ
 - increases with expected distress cost of marginal investor

bid-ask spread

Average ask to inter-dealer spread

$$\bar{A} - P = \frac{\theta}{r + \gamma + \lambda(1 - \theta)} \int \left(\delta' - \delta^{\star}\right) dF(\delta' \mid \delta' > \delta^{\star}),$$

Average bid to inter-dealer spread

$$P - \bar{B} = \frac{\theta}{r + \gamma + \lambda(1 - \theta)} \int \left(\delta^\star - \delta'\right) \, dF(\delta' \, | \, \delta' < \delta^\star),$$

- Zero when $\theta = 0$
- Depends on "tail" expectations of utility flows
- Asymmetric, decreases in λ and also in γ

some extensions

alternative price setting mechanism: RFQ

• Investors often sollicit quotes from several dealers:

Request for Quotes (RFQ) on electronic platforms e.g. Hendershott (15): sollicit 20-30 dealers, 25% response

- Small Burdett-Judd (83) auctions!
- Same as before with $\theta = \text{proba}$ of receiving one quote
- New predictions about quote dispersion conditional on δ
- Some references: Glebkin-Yueshen-Shen (22), Weill (20)

unrestricted asset holdings

• Demand determined by $P=V_q(\delta,q)$ $V_q(\delta,q) \ \ {\rm calculated \ by \ replacing} \ \delta \ {\rm by} \ u_q(\delta,q) \ {\rm in} \ \Delta V(\delta)$

- A key difference: all investors are now marginal now search frictions change the demand of all δ when λ increases: high δ demand more, low δ less
- Provide a theory of trade size
 how it depends on frictions, investors' sophistication and needs
- With dealers entry: can create multiple equilibria
- Some references: Gârleanu (09), Lagos-Rocheteau (07,09)

other forms of heterogeneity

Examples

```
search intensity, \lambda bargaining power, \theta trading needs, \gamma
```

All are relatively easy to handle in semi-centralized markets
 asset demand can be derived as before

and much more!

Non stationary dynamics and crises

```
Weill (07), Lagos-Rocheteau-Weill (11), Feldhütter (12)
DiMaggio (13), Biais-Hombert-Weill (14), Chiu-Koeppl (11)
```

Debt pricing

```
He-Milbradt (07), Chaumont (18), Chang (22)
```

Search models of centralized exchange mechanisms

```
Biais-Weill (08), Pagnotta-Philippon (18) Dugast (18)
```

Asymmetric information

```
Guerrieri-Shimer (14), Lester-Shourideh-Venkateswaran-Zetlin-Jones (18)
```

General Equilibrium

```
Lagos-Zhang (20), Kargar-Passadore-Silva(22)
```

next week, with Ben Lester

- Fully decentralized markets
- Everyone search, including dealers
- Key applications:

endogenous intermediation inter-dealer markets inter-bank markets all-to-all liquidity