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The Global Financial Crisis of 2007-2009 and the COVID-19 crisis in March 2020 underscore the importance

of liquidity frictions in determining asset prices. The onset of these crises triggered an increase in risk

premia and market volatility, as well as a �ight to safety that depressed short-term interest rates. We also

observe large portfolio reallocations, substantial increases in transaction costs and trading volume, and the

deterioration of market liquidity. Understanding the joint dynamics of asset prices and liquidity conditions

becomes even more relevant as the policy responses to these crises involved measures to reduce market

illiquidity and absorb risky assets directly. In particular, the U.S. Federal Reserve’s announcements of the

unprecedented secondary market corporate bond-buying program in March and April 2020 emphasize

supporting market liquidity as their primary goal.1 The assessment of these policies requires a uni�ed

framework that captures how liquidity conditions and risk premia are jointly determined.

To capture the e�ects of trading frictions on asset prices and risk premia, one needs to depart in im-

portant ways from the workhorse models used to study market liquidity. The seminal work of Du�e,

Gârleanu, and Pedersen (2005) on the search theory of over-the-counter (OTC) markets restricts investors’

ability to adjust their portfolio to keep the problem tractable. Lagos and Rocheteau (2009) relax this re-

striction by introducing quasi-linear preferences. Despite successfully addressing key aspects of market

liquidity, this approach essentially eliminates the e�ects of search frictions on risk premia. Introducing

risk-averse investors to capture such e�ects makes the problem highly intractable, as this requires keep-

ing track of the entire distribution of investors’ asset holdings and wealth.

In this paper, we study a general equilibrium model with risk-averse agents, unrestricted asset holdings,

and trading frictions in the secondary market. We make three main contributions to the literature. First,

we provide a uni�ed framework to study the joint determination of the risk premium, risk-free rates, and

market liquidity in general equilibrium. Second, we propose a new solution method, which we call state-

global perturbations, that allows us to analytically characterize the equilibrium even in the case of an

in�nite-dimensional state space. Third, we apply our model to quantitatively study the �nancial market

response to the COVID-19 shock. We calibrate the model to match key asset pricing and secondary market

moments from the corporate bond market. We �nd that search frictions are quantitatively important in

determining the magnitude of the risk premium in the long run. Moreover, we show that in response to

a large negative shock, the model can generate a substantial increase in bid-ask spreads, trading volume,

1See FAQs for the Secondary Market Corporate Credit Facility from the Federal Reserve Bank of New York: https://www.
newyorkfed.org/markets/primary-and-secondary-market-faq/corporate-credit-facility-faq.
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and the risk premium, as well as a decline in interest rates to nearly zero. These results are consistent with

the empirical evidence from the height of COVID-19 crisis in March 2020.

We consider an endowment economy where risk-averse investors can trade a risk-free bond without

frictions and a risky asset in an OTC market with search frictions. Investors di�er only in their initial

endowments of the risky asset and risk-free bond.2 Bilateral trades are intermediated by risk-neutral

dealers who hold no inventories and have access to a frictionless interdealer market but face capacity

constraints. Dealers post contracts specifying the number of shares of the asset and an intermediation fee.

Investors choose among these contracts in a competitive search market.3 The speed at which an investor’s

order is executed depends on the number of contracts posted by dealers and the mass of investors sending

orders for that given contract. Due to the presence of intermediation fees, investors e�ectively solve a

portfolio problem with transaction costs.

Our framework captures three key features. First, unlike the standard portfolio choice problem without

transaction costs, in our setting, an investor’s risky asset holding is a state variable and not a control

variable. Therefore, the joint distribution of investors’ wealth and portfolio holdings a�ects the economy’s

aggregate behavior, including risk premia, interest rates, and transaction costs. Second, we show that

contracts with higher intermediation fees attract more dealers, which leads to a higher trading speed for

investors. Thus, we obtain a trade-o� between trading speed and transaction costs. Finally, despite the

presence of proportional transaction costs, there is no inaction region in the model, and investors trade

continuously. This result is a consequence of the endogenous choice of trading speed, as investors may

choose cheaper (and slower) trades when the gains from trade are relatively small.

We present two main results on the implications of search frictions for portfolio choice and asset

pricing. First, we characterize investors’ trading behavior. Whether an agent decides to buy or sell the

risky asset depends on the marginal utility of holding an additional unit of the risky asset. We denote this

key object by the marginal value of portfolio rebalancing. This object is analogous to the marginal utility

of the asset in standard search models. We show that this marginal value of rebalancing is the present

discounted value of the deviation of investors’ actual portfolio share from the frictionless benchmark of

2The focus on the heterogeneity of initial endowments is only for expositional purposes, as our results extend to other types
of heterogeneity. In particular, we consider a version of the model with heterogeneous risk aversion and Epstein-Zin preferences
in our quantitative exercise.

3Although our results most likely extend to a case of random search, the competitive search setting has a few advantages.
First, it provides seamless integration with standard portfolio theory, where prices are determined by competitive forces instead
of bilateral bargaining. Second, it enables us to capture the trade-o� between trading speed and trading cost, documented in
various OTC markets.
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Merton (1971). We thus provide a new microfoundation for the asset valuation function in search models.

The marginal value of portfolio rebalancing pins down investors’ trading behavior: trading speed and

order size increase the further away investors’ portfolios are from the target portfolio. Second, we provide

a liquidity-adjusted consumption capital asset pricing model (CCAPM). In our model with search frictions,

the risk premium depends on how the distribution of the marginal value of portfolio rebalancing covaries

with consumption.

The asset pricing results above rely on the relations among endogenous variables. To further charac-

terize the model’s implications, we need to obtain an explicit solution. We can obtain analytical results

using what we call state-global perturbation techniques. We consider a small-risk approximation of the

equilibrium conditions, but in contrast to standard applications of perturbation methods, we do not as-

sume that the economy is near a steady state.4 Instead, our approach is global in the state space, which is

crucial to capture the economy’s behavior after large shocks. Moreover, our method handles large state

spaces, even in�nite-dimensional ones, enabling us to capture the rich investor heterogeneity that typically

emerges with search frictions. This method also allows us to obtain closed-form asymptotic expressions

for asset prices and trading behavior, despite the presence of trading frictions and time-varying investment

opportunities.

Aided by the state-global perturbation techniques, we explore the asset pricing implications of trading

frictions and portfolio �ows. We show that both the risk premium and the interest rate depend on the

asymmetry and dispersion of investors’ portfolios. Portfolio dispersion measures how far investors are

from their desired portfolio, while portfolio asymmetry captures the relative distance of sellers and buyers

to their desired portfolios. We �nd that portfolio asymmetry ampli�es the risk premium relative to a

model with no frictions. In particular, if there is a net selling pressure such that sellers’ portfolios are

further away from the frictionless target than those of buyers’, this portfolio asymmetry leads to a higher

risk premium than the one in a frictionless benchmark. Moreover, we show that the distribution of investor

portfolios matters for the determination of the interest rate. The dispersion in agents’ portfolios ampli�es

the precautionary saving motive, leading to a �ight to safety and a decline in the risk-free rate.

We also show how investor portfolios a�ect market liquidity. We �nd that higher portfolio dispersion

induces a surge in demand for transaction services leading to higher trading volumes, transaction costs,

4For a discussion of perturbation methods where the model is linearized around the non-stochastic steady state, see
Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016).
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and dealer pro�ts. Higher dispersion has two impacts on trading speed: (i) investors want to trade faster

the further away they are from the target portfolio and (ii) the increased trading costs make them shift to

cheaper and slower trades. In equilibrium, due to dealer capacity constraints, the second force dominates,

and higher dispersion endogenously leads to an increase in trading delays.

Next, we consider the response of the economy to a large negative aggregate shock. Our model can

capture the joint behavior of market liquidity and risk premia observed during the COVID-19 crisis both

qualitatively and quantitatively. We show that portfolio asymmetry and dispersion are countercyclical.

The increase in asymmetry and dispersion leads to (i) a rise in risk premia and a decline in interest rates,

(ii) an increase in trading volume, as investors have a stronger incentives to rebalance their portfolios, and

(ii) a deterioration of market liquidity as measured by increased transaction costs and trading delays. All

these outcomes are consistent with empirical evidence during the COVID-19 crisis, recently documented

in Haddad, Moreira, and Muir (2020), Kargar et al. (2020), O’Hara and Zhou (2020), and others. In partic-

ular, Haddad, Moreira, and Muir (2020) emphasize that these patterns are hard to reconcile using existing

frictionless models or even those with �nancial constraints.

To quantitatively assess the impact of large shocks on asset prices and liquidity conditions, we extend

the model to incorporate heterogeneous risk aversions. Using secondary market transaction data from

TRACE, we calibrate our model to match moments from the corporate bond market before the onslaught

of the COVID-19 crisis, as well as standard asset pricing moments. We consider an adverse shock that

generates the response of bid-ask spreads consistent with the one observed during the crisis, a 10-fold

increase. We �nd that the model endogenously generates an increase in the risk premium of 25%, interest

rates going to zero, and a 20% increase in trading volume. This is roughly consistent with the empirical

evidence during this period mentioned above.

Related literature

This paper connects to di�erent strands of the literature. First, our paper is closely related to the literature

on search in asset markets. The seminal contribution to this body of work is Du�e, Gârleanu, and Peder-

sen (2005), DGP hereafter, who introduce search frictions in an asset pricing model where investors and

dealers meet randomly over time. In DGP, investors’ valuations change exogenously when they receive

(uninsurable) idiosyncratic liquidity shocks, and investors can hold at most one unit of the asset. Lagos and

Rocheteau (2009) extend this setup by allowing agents to hold arbitrary asset positions. To keep the model
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tractable, they assume that the utility function is quasi-linear in consumption and that the asset’s valuation

is exogenous. These assumptions imply, however, that the aggregate risk premium is zero.5 These papers

explain important aspects of market liquidity, such as bid-ask spreads and trading volumes. We contribute

to this literature by endogeneizing the asset’s valuation and providing a joint theory of the aggregate risk

premium and the liquidity risk premium.

Second, our paper is also related to an extensive literature on portfolio choice models with frictions

(e.g., Constantinides, 1986; Davis and Norman, 1990; Dumas and Luciano, 1991; Buss and Dumas, 2019).

Due to proportional transaction costs, this class of models features an inaction region. Our setup makes

two contributions to this literature. First, we show that proportional transaction costs do not lead to a no-

trade region in a setup with competitive search because the trading cost depends on the endogenous choice

of trading speed. Second, while most of these studies focus on asset prices as primitives of the model, we

derive the implications of search frictions for risk premia and interest rates in general equilibrium.

An alternative body of work studies portfolio choice under quadratic transaction costs (e.g., Heaton

and Lucas, 1996; Gârleanu and Pedersen, 2013). Our model is related to the latter, who �nd that the optimal

portfolio strategy for an investor with quadratic utility is to aim in front of the Markowitz portfolio target.

In our model with search frictions and constant relative risk aversion (CRRA) preferences, we �nd a similar

result where investors should adjust their portfolio towards a target, corresponding to the optimal Merton

(1971) portfolio. We provide a liquidity-adjusted CCAPM in the spirit of Acharya and Pedersen (2005). We

�nd that asset returns depend not only on their covariance with the aggregate endowment but also on

the marginal value of portfolio rebalancing, which is the key driver of trading behavior in our setup. Our

framework also provides a microfoundation for bounded variation and trading delays whose asset pricing

implications are studied in Longsta� (2001) and Longsta� (2009), respectively.6

Third, our paper contributes to the large literature on market microstructure. These studies rationalize

the existence of bid-ask spreads due to risk aversion of dealers (e.g., Stoll, 1978) and adverse selection (e.g.,

Grossman and Miller, 1988). Kyle (1985) studies the impact of order �ow on asset prices. In our paper, the

order �ow also impacts asset prices. However, we focus on the risk premium response to portfolio �ows,

while Kyle (1985) abstracts from risk premia e�ects.

5One notable exception is Gârleanu (2009) who studies portfolio choice in an economy with CARA preferences and random
search. This approach eliminates wealth e�ects and the portfolio rebalancing channel that are crucial in our setting.

6Brunnermeier and Pedersen (2009) also study the link between asset prices and market liquidity, but focus on dealers’
funding constraints instead of search frictions.
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Finally, our paper relates to the extensive literature on the asset pricing implications of investor hetero-

geneity (e.g., Dumas, 1989; Longsta� and Wang, 2012; Gârleanu and Panageas, 2015; Alvarez and Atkeson,

2018). We introduce search frictions in a standard asset pricing model with heterogeneous agents (e.g.,

Gârleanu and Panageas, 2015). In these studies, the wealth distribution among agents is the main state

variable. We show that once we consider secondary market frictions, the distribution of asset holdings is

an additional state variable that pins down asset prices. Thus, our paper is also related to studies that em-

phasize the impact of portfolio �ows on the risk premium (e.g., Koijen and Yogo, 2019; Gabaix and Koijen,

2020).

1 Motivating Evidence

In this section, we provide some empirical evidence to motivate our theoretical framework. In particular,

we characterize the joint response of asset prices, market liquidity, and portfolio �ows during the COVID-

19 crisis.

1.1 Asset pricing

As shown in the top two panels of Figure 1, we witnessed a large decline in stocks and corporate bond

returns in the U.S. during the most tumultuous period of the crisis in mid-March 2020. During this period,

there was also an intense �ight-to-safety episode, where the short-term interest rate went to nearly zero.

The S&P 500 return and 1-year Treasury rate declined by over 35% and 92%, respectively, while the AAA

(high-yield) credit spread increased by a factor of �ve (three).

1.2 Liquidity

These large movements in asset prices were accompanied by an increase in trading volume and a deteriora-

tion of liquidity conditions. Using transaction-level data from the corporate bond market, as shown in the

bottom-left panel of Figure 1, we see that the trading volume for customer-to-dealer trades increased by

approximately 40% relative to pre-pandemic levels. At the same time, inter-dealer trade volume remained

almost unchanged.7 In the bottom-right panel, we estimate that transaction costs for customer-to-dealer

trades increased dramatically in mid-March 2020. Only after unprecedented interventions from the Fed-

7For a detailed description of the TRACE data and how we construct our sample, see Appendix OA.2.1.
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Figure 1. Stock returns, interest rates, credit spreads, trading volume, and transaction costs for corporate bonds during the onset
of the COVID-19 pandemic. Source: TRACE, Bloomberg, and FRED.

eral Reserve through the primary and secondary market corporate credit facilities did these patterns start

to reverse. However, as of the end of 2020, they have not yet reached their pre-crisis levels. Investors

responded to the increase in transaction costs by changing their trading speed, as documented in Kargar

et al. (2020). When trading costs for fast trades, where dealers hold corporate bonds in their inventories,

rose dramatically in mid-March 2020, customers substituted to slower so-called agency trades where deal-

ers act as matchmakers. Therefore, we witnessed a deterioration of market liquidity along two dimensions,

as transaction costs and trading delays both increased in mid-March 2020.

1.3 Portfolio reallocation

There have been massive out�ows from �xed income mutual funds and ETFs during the onset of the

COVID-19 pandemic. Falato, Goldstein, and Hortaçsu (2020) document that in March 2020, corporate bond

funds and ETFs experienced aggregate net out�ows of over 4% relative to net asset values, far greater than
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in previous stress episodes including October 2008. Similarly, as shown in Ma, Xiao, and Zeng (2020), in

March 2020, bond mutual funds lost approximately 12% of their assets under management. In addition,

as documented in Du�e (2020), in March 2020, foreign investors sold, on net, approximately $300 billion

of Treasury bonds and notes, far above normal levels. The intense selling pressure was re�ected in the

relative transaction costs for buyers and sellers. For corporate bonds, we �nd that trades where customers

sell to dealers have signi�cantly higher transaction costs than customer-buy trades. The bottom-right

panel of Figure 1 shows that this di�erence is approximately 40 bps (95 bps for customer-sell and 55 bps

for customer-buy trades) in March 2020 and is much larger during the peak of the crisis in mid-March

2020.

The evidence in Figure 1 indicates substantial movements in asset prices, liquidity conditions, and

portfolio �ows in mid-March 2020.8 Building on this evidence, in the next section, we study a model with

two key features: competitive search and risk-averse agents. Competitive search allows us to capture the

two dimensions of liquidity: transaction costs and trading delays. Having risk-averse agents enables us to

study the impact of portfolio �ows on risk premia and interest rates.

2 Model

In this section, we present a general equilibrium asset pricing model with search frictions. The model

captures the main features of directed search models of OTC markets, as in, for example, Lester, Rocheteau,

and Weill (2015), in an environment with risk-averse agents.9

2.1 Environment

Time is continuous, t ∈ [0, ∞). The economy is populated by a continuum of investors and dealers, each

with a unit mass. The economy’s aggregate endowment follows a geometric Brownian motion:

dYt
Yt

= �dt + �dZt , (1)

where � and � are constants and Zt is a standard Brownian motion de�ned on a �xed probability space

(Ω, , P) and a �ltration {t , t ≥ 0} of sub-�-algebras of  satisfying the usual conditions, as de�ned by
8The evidence provided above is not unique to the COVID-19 pandemic. Similar patterns emerged during the 2007-2009

Global Financial Crisis (GFC), as shown in Figure OA.1 in Appendix OA.2.2.
9See Wright et al. (2019) for a review of the literature on competitive (or directed) search.
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Protter (2004). Investors have access to two assets: a risk-free bond and a risky asset. The risk-free bond

market is frictionless so that investors can adjust the amount invested in the riskless asset instantaneously.

The risky asset is a claim on the aggregate endowment, traded on a market subject to search frictions.

2.1.1 Dealers and competitive search

We assume that trades on the risky asset are bilateral and intermediated by dealers, that is, investors must

buy or sell through dealers. Dealers have continuous access to a frictionless inter-dealer market, where

the risky asset trades at price pt , which evolves according to:

dpt
pt

= �p,tdt + �p,tdZt ,

where �p,t and �p,t are determined in equilibrium.10

Dealers post contracts & = (n, �) ∈ Σ specifying the number of shares n ∈ ℝ they sell to investors and

the intermediation fee � ∈ ℝ+ investors must pay to dealers. Dealers hold no inventory. If n > 0, the dealer

sells to the investor n units of the asset, which are immediately acquired from the inter-dealer market. If

n < 0, the dealer buys |n| units from the investor, which are immediately sold at the inter-dealer market.

The fees determine the e�ective price faced by investors. Investors ultimately pay pt + � when buying the

asset, and they receive the amount pt − � when selling it.

Dealers post a quantity dt (n, �) of the contract & = (n, �). Investors choose which contract to submit

an order to. The total mass of investors submitting orders to the contract (n, �) is denoted by �t (n, �).

We assume that the total number of orders executed at a given moment in time is determined by a

constant-returns-to-scale matching function m(�, d). This implies that the order of any individual in-

vestor is executed at Poisson arrival times with intensity �(�t (n, �)) ≡ m(1, �t (n, �)), where �t (n, �) ≡

dt (n, �)/�t (n, �) denotes the dealer-to-investor ratio or market tightness. If �t (n, �) = 0, we assume that

�t (n, �) = ∞. Analogously, a contract (n, �) posted by a dealer is executed at Poisson arrival times with

intensity �(�t (n, �))/�t (n, �). The arrival rate �(⋅) is given by:

�(�) = �
��

�
, (2)

10The assumption of a frictionless inter-dealer market follows Du�e, Gârleanu, and Pedersen (2005) and it is standard in the
OTC market literature.
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where � and � control, respectively, the e�ciency and concavity of the matching function.

Dealers are risk-neutral and choose dt (n, �) to maximize expected pro�ts,

Πd,t = max
{dt (n,�)}(n,�)∈Σ

∫
Σ
dt (n, �)

�(�t (n, �))
�t (n, �)

|n|�d&, (3)

subject to a non-negativity constraint dt (n, �) ≥ 0 and a capacity constraint,

∫
Σ
dt (n, �)|n|d& ≤ d, (4)

where the parameter d determines dealers’ intermediation capacity. This constraint can be motivated by

dealers’ costs of posting contracts, where d represents the total budget available to dealers to cover such

costs. This feature intends to capture the short-run behavior of the supply of intermediation services in

the secondary market.

2.1.2 Investors

There is a continuum of investors indexed by i ∈ [0, 1]. Investor i maximizes her utility by choosing

consumption Ci,t and which contract to send the order &i,t = (ni,t , �i,t ), given her initial wealth Wi,0 and

the initial number of shares of the risky asset, Si,0. Wealth is computed as the value of the riskless bonds

held by investor i and the value of the shares evaluated at the inter-dealer price pt . Investors di�er only on

their initial endowments of the risky and riskless assets, and this heterogeneity in endowments provides

the motivation for trade in this economy.

The investor’s problem is given by:

V (Wi , Si , X ) = max
[Ci,t ,ni,t ,�i,t ]

E0 [∫
∞

0
e−�t

C1−
i,t

1 − 

dt

]
, (5)

subject to:11

dWi,t = [rtWi,t + �tptSi,t −
1
2
pt�n2i,t − Ci,t] dt + �R,tptSi,tdZt − �i,t |dSi,t | (6)

dSi,t = ni,tdNi,t , (7)

11See Appendix OA.1.1 for a derivation of the investor’s budget constraint in the presence of transaction costs.
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and a lower bound on wealth to prevent Ponzi schemes, where Ni,t is a Poisson process with arrival inten-

sity �(�t (ni,t , �i,t )).

Investors take as given the process for the interest rate rt and the risk premium �t = �R,t −rt , where the

expected return on the risky asset is �R,t = �p,t +Yt /pt , and the volatility is �R,t = �p,t . Note that returns are

computed using the inter-dealer price pt , so the trading fee �i,t is subtracted from investor’s wealth when

a trade is realized. Investors face a quadratic portfolio adjustment cost 0.5�n2i,t . This cost captures any

cognitive or physical costs investors face in adjusting their portfolio.12 Note that, in contrast to a standard

portfolio problem with transaction costs, the number of shares invested in the risky asset Si,t is a state

variable instead of a control variable. The number of shares evolves with the number of orders submitted,

ni,t , and whether this order is executed, which is determined by the Poisson process, Ni,t . Therefore,

investors face an idiosyncratic order execution risk, as whether their order will be executed depends on

the realization of the random variable Ni,t .

Finally, in a Markov equilibrium, asset prices are a function of the (K -dimensional) aggregate state

variable Xt ∈ ℝK , that is, prices satisfy rt = r(Xt ) and pt = p(Xt ). The aggregate state variable follows the

stochastic process:

dXt = �X,tdt + �X,tdZt ,

where �X,t and �X,t are determined in equilibrium.

2.1.3 Market tightness

The market tightness function �t (n, �) must be de�ned for every contract, even for the ones not active in

equilibrium. We follow Lester, Rocheteau, and Weill (2015) and impose the following restriction on �t (n, �).

Let �t (0, 0) = 0 and, for & ≠ (0, 0), we assume that

�t (&) = inf {� ≥ 0 ∶ Vt (Wi , Si |&, �) > Vt (Wi , Si), for some investor i with state (Wi , Si)} , (8)

and �t (&) = ∞ if this set is empty, where Vt (Wi , Si |&, �) is the value for an investor constrained to choose

(ni,t , �i,t ) = & at date t , given an arrival rate of �(�). This assumption captures the idea that if the market

tightness is larger than what is given by Equation (8), then investors would send orders to that contract,

reducing the market tightness until it coincides with �t (&) as given above.
12See, for example, Heaton and Lucas (1996) and Gârleanu and Pedersen (2013) for models with quadratic transaction costs.
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2.1.4 Competitive Search Equilibrium

We provide the de�nition of equilibrium below.

De�nition 1. A competitive search equilibrium is a list of stochastic processes adapted to the �ltration gen-

erated by Zt : the aggregate endowment Y , the price of the claim on aggregate endowment p, the risk-free

interest rate r , and the market tightness function {�t (n, �)}(n,�)∈Σ; the mass of contracts posted by dealers

{dt (n, �)}(n,�)∈Σ; and a set of stochastic process for each investor i ∈ [0, 1]: wealth Wi , asset holdings Si , con-

sumption Ci , and a contract (ni , �i); such that:

(i) Aggregate endowment evolves according to (1), given Y0 > 0.

(ii) Given the stochastic process for the market tightness function {�t (n, �)}(n,�)∈Σ, the mass of contracts

{dt (n, �)}(n,�)∈Σ solves the dealer’s optimization problem (3).

(iii) Given the stochastic processes for (pt , rt ) and themarket tightness function {�t (n, �)}(n,�)∈Σ, choices (Ci,t , ni,t , �i,t )

solve investor i’s optimization problem (5).

(iv) The market tightness function {�t (n, �)}(n,�)∈Σ satis�es condition (8).

(v) Markets for consumption goods, risky asset, and risk-free bonds clear

∫
1

0
(Ci,t + 0.5�ptn2i,t) di + Πd,t = Yt , ∫

1

0
Si,tdi = 1, ∫

1

0
Wi,tdi = pt .

2.2 Equilibrium characterization

We next provide a characterization of the equilibrium. We start by considering the dealers’ problem and

how their behavior leads to a trade-o� between execution speed and trading costs. We characterize the

investors’ marginal valuation of the risky asset and show how this marginal value shapes their trading

behavior. We then show how the distribution of investors’ marginal valuation pins down equilibrium

trading costs, volume, and dealers’ compensation.

2.2.1 Dealers’ problem

The �rst-order condition for the dealers’ problem is:

�(�t (n, �))
�t (n, �)

�
pt

≤ vd,t , (9)
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with equality if dt (n, �) > 0, where ptvd,t is the Lagrange multiplier on the capacity constraint in (4). Notice

that the dealers’ pro�ts are given by ptvd,td , so vd,t captures the pro�tability of dealers, which is important

when determining intermediation costs in equilibrium.

An important implication of the dealer’s optimal choice is that investors will face a trade-o� between

trading speed and trading costs. In particular, rearranging (9) for an active contract, we obtain:

�
pt
=

�t (n, �)
�(�t (n, �))

vd,t . (10)

The intermediation fee as a fraction of the inter-dealer price, �/pt , is increasing in the market tightness,

� , and the dealers’ value vd,t . The positive relation between the intermediation fee and market tightness

re�ects the incentive of dealers to post contracts. Contracts with higher intermediation fees attract more

dealers, which increases market tightness �t (n, �), making it easier for investors to �nd a counterparty.13

2.2.2 Investors’ problem

For the characterization of the investors’ problem, it is convenient to have them directly choose the mar-

ket tightness � , as the trading fee � is determined by condition (10). Given this change of variables and

conditions (6), (7), and (9), the Hamilton-Jacobi-Bellman (HJB) equation for the investor can be written as:

�V = max
C,n,�

C1−


1 − 

+ VW [rW + �pS −

1
2
p�n2 − C] + VX �X,t +

1
2
VWW�2R(pS)

2 +
1
2
� ′XVXX�X

+ pS�RVWX�X,t + [V (W −
�vd
�(�)

p|n|, S + n, X) − V (W , S, X )] �(�). (11)

This HJB equation is reminiscent of the one for portfolio problems with time-varying investment op-

portunities, where aggregate conditions are described by Xt . The last term captures the impact of search

frictions. When an investor meets a dealer, which happens with intensity �(�), the number of shares

changes by n and wealth is reduced by the trading costs, �vd
�(�)p|n|.

The problem in (11) encompasses two important benchmarks. In the absence of transaction costs, it

corresponds to a standard Merton portfolio problem (see Merton, 1971). In the case of quasi-linear value

function V (W , S, X ) = W + v(S), the HJB equation would correspond to a version of the competitive

13This trade-o� between trading speed and trading costs has been empirically documented, for example, in Hendershott and
Madhavan (2015) and Li and Schürho� (2019).
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search model proposed by Lester, Rocheteau, and Weill (2015).14 Importantly, the (indirect) utility that the

investor derives from the asset will not be separable from the level of wealth with CRRA preferences, so

it will be necessary to keep track of the joint distribution of wealth and risky asset shares to derive the

economy’s aggregate behavior. Assumption 1 below enables us to focus on the simpler case of only two

types.15 We relax this assumption in Section 5 and show how the case with order execution risk can be

analyzed using perturbation methods.

Assumption 1 (Big-family assumption). Investors belong to two families (types): If i ≤ � , then the investor

belongs to family 1 and, if i > � , the investor belongs to family 2. Investors pool their resources inside each

family and they perfectly diversify the (idiosyncratic) order execution risk.

Assumption 1 implies that investors can perfectly diversify their order execution risk, such that a mass

�(�) of orders are executed every instant. This assumption simpli�es the exposition, as it allow us to focus

on the two-type case, but it is not necessary for our main results.

The HJB equation under Assumption 1 can be written as:

�V = max
C,n,�

C1−


1 − 

+ VW [rW + �pS −

1
2
p�n2 − C] + VX �X +

1
2
VWW�2R(pS)

2 +
1
2
� ′XVXX�X

+ pS�RVWX�X − VW �vdp|n| + VSn�(�). (12)

Conditions (11) and (12) di�er only on the last term, where the di�erence of value functions in (11)

is replaced by the corresponding derivatives in (12). Note that the quadratic adjustment cost plays an

important role in the HJB eqution (12), as it guarantees that there is an interior solution to the order size n.

In particular, the quadratic adjustment cost plays a role similar to the concavity of the valuation function

in standard search models.16

The investors’ trading behavior depends to a great extent on the marginal value of portfolio rebalanc-

ing, Ω, de�ned as:

Ω(W , S, X ) ≡
VS(W , S, X )
VW (W , S, X )

. (13)

14The value function would be quasi-linear if, for instance, 
 = 0 and the investor derived some utility �ow from holding the
asset, similar to money-in-the-utility models.

15This assumption was originally introduced by Lucas (1990) in his study of the liquidity e�ect and it is often adopted in
macro-�nance models (e.g., Gertler and Kiyotaki, 2010).

16For instance, assuming the quasi-linear value function V (W , S, X ) = W − 0.5�p (S − S)
2, the problem with order execution

risk would be analogous to problem (12), as the expression V (W − �|n|, S + n, X ) − V (W , S, X ) = −�|n| + VSn − 0.5�pn2 would also
have a quadratic term in n.
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It measures the marginal utility of adjusting the portfolio by one unit, measured in units of wealth.

Note that Ω can be positive or negative. In the benchmark case in which there are no frictions, the initial

composition of an investors’ wealth is not relevant, so Ω(W , S, X ) = 0. If the value function is quasi-linear

in wealth, V (W , S, X ) = W +v(S), then the marginal value of portfolio rebalancing is equal to the marginal

utility of holding the asset v′(S). In the case with CRRA preferences, the marginal value of rebalancing

depends on both W and S.

The optimatility condition for consumption is given by the standard expression:

C−
 = VW . (14)

The �rst-order conditions for the order size and market tightness are given by:

n =
1
� [�(�)

Ω(W , S, X )
p

− sg (n) vd�] , � ′(�)
|Ω(W , S, X )|

p
= vd , (15)

where sg (ni,t ) is the sign function. The �rst equation in (15) corresponds to the optimality condition for the

order size. If the bene�t of increasing the number of shares, �(�)Ωp , exceeds the expected transaction cost,

vd� , then the investor will choose a positive order size n. The order size is decreasing in the adjustment

cost parameter � . The second equation in (15) corresponds to the optimality condition for the market

tightness. An increase in � generates an expected gain for investors of � ′(�) |Ω|p , which is balanced against

the increase in the expected transaction cost vd .

2.2.3 Inaction region and competitive search

A typical feature of models with (exogeneous) proportional transaction costs is the presence of an inaction

region (e.g., Constantinides, 1986; Davis and Norman, 1990). Importantly, this is not the case with endoge-

nous transaction costs, as in search models. If the market tightness is �xed, then it would be optimal to

set n = 0 whenever �(�) |Ω|p < vd� , as the bene�t of trading would not be enough to compensate for the

transaction cost. If investors can choose the market tightness, however, they can shift to contracts with

smaller transaction costs when the gains from trade are small. Combining the optimality conditions for

n and � , and using Equation (2), we �nd that it is always optimal to trade a non-zero amount as long as
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Ω ≠ 0:

� = (
�
vd
∣ Ω ∣
p )

1
1−�

, n = �
��

�
1 − �
�

Ω
p

. (16)

First, investors choose a smaller value for the market tightness, or equivalently higher trading delays,

when the gains from trade measured by |Ω| are small. The trading speed declines in the dealers’ pro�tability

vd . Second, investors buy the asset if Ω > 0 and sell it if Ω < 0. There is no inaction region and investors

trade continuously.17 Therefore, competitive search allows us to accommodate proportional transaction

costs maintaining the tractability of continuous trading models.

2.2.4 Marginal value of portfolio rebalancing

The marginal value of rebalancing, Ω(W , S, X ), plays a crucial role in determining the trading behavior of

an investor. In Proposition 1, we characterize the marginal value of rebalancing in terms of deviations of

the investor’s portfolio from a target, which corresponds to the (frictionless) Merton portfolio.

Proposition 1. The marginal value of rebalancing, denoted by Ωi,t ≡ Ω(Wi,t , Si,t , Xt ), is given by

Ωi,t = Et [∫
∞

t

e−�(s−t)C−
i,s
C−
i,t

ps
Vi,s�
2
R,s (Targeti,s −

psSi,s
Wi,s )

ds
]
,

where 
Vi,t ≡ −
VWW,itWi,t

VW,it
is the value-function risk aversion, and Targeti,t is given by:

Targeti,t =
�R,t − rt

Vi,t�2R,t

+
VWX,it


Vi,tVW,it

�X,t
�R,t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Merton portfolio share

. (17)

Proof. See Appendix A.1.

The marginal value of rebalancing is the present discounted value of the deviation of the actual port-

folio share, ptSi,t /Wi,t , from the frictionless intertemporal portfolio. Note that (17) is the optimal portfolio

choice in an economy with time-varying investment opportunities and no frictions, as �rst characterized

by Merton (1971). This optimal portfolio is the sum of the myopic portfolio choice, as in Markowitz’s

mean-variance analysis, and the intertemporal hedging term, by which investors take into account the

evolution over time of the investment opportunity set. Thus, for example, the marginal value of portfolio

17Gârleanu and Pedersen (2016) provide evidence indicating that the trading behavior of institutional investors can be well
approximated by continuous trading models.
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rebalancing is positive if the investor foresees that now and in the future her share of the risky asset is

expected to be lower than the one she would choose in a frictionless environment.

Proposition 1 provides a generalization of the results in Gârleanu and Pedersen (2013). In a model with

quadratic utility and quadratic transaction costs, they �nd that investors adjust their portfolio towards

the present discounted value of the Markowitz portfolio, which corresponds to the myopic component

discussed above. In our setting with CRRA preferences, we obtain as a target the Merton portfolio, which

includes intertemporal hedging demands. A second distinction with Gârleanu and Pedersen (2013) is that

we derive a partial adjustment towards a target portfolio in the presence of (endogenous) proportional

transaction costs. This is a consequence of allowing for endogenous transaction costs, as otherwise in-

vestors’ behavior would be characterized by an inaction region.

The result in Proposition 1 also provides a new microfoundation for the asset valuation function in

search models.18 In standard search theory, to create a demand for trading assets, studies typically assume

that investors’ utility �ow changes exogenously. In our model, aggregate shocks impact the marginal value

of rebalancing through investors’ wealth, creating an endogenous trade motive. In particular, the marginal

value of holding an additional unit of the asset depends on the expected deviation of the portfolio share

from the target. Therefore, it depends on both the wealth and the investment opportunity set.

2.2.5 Spreads and dealers’ pro�tability

Trading fees and the dealers’ value can also be characterized as functions of the marginal value of portfolio

rebalancing. The intermediation fees that investors must pay to dealers are given by:

�i,t = �|Ωi,t |. (18)

Note that investors who are further away from their desired portfolio, such that they have a high value

for |Ωi,t |, pay a higher intermediation fee in equilibrium.

Given our assumption of two families, the bid-ask spread can be de�ned as follows:

�ba,t ≡
�1,t + �2,t

pt
,

18See Weill (2020) for a discussion of alternative microfoundations for the asset valuation function in search models.
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where �j,t denotes the fee incurred by family j ∈ {1, 2}. Note that the bid-ask spread is increasing in the

dispersion of the marginal value of rebalancing, as a mean-preserving spread of Ω raises the value of �ba,t .

An increase in the dispersion of Ω implies a higher demand for trading, as investors are on average further

away from their desired portfolio. This higher demand for trading leads to higher transaction costs in

equilibrium.

Combining the expressions in (16) with condition (4), we obtain vd,t :

vd,t = �
2
1+�

[
1 − �
��d (

� (
|Ω1,t |
pt )

2
1−�

+ (1 − �)(
|Ω2,t |
pt )

2
1−�

)]

1−�
1+�

, (19)

where Ωj,t denotes the marginal value of rebalancing for an investor of type j ∈ {1, 2}. Analogous to the

bid-ask spread, the pro�tability of dealers increases in the dispersion of the marginal value of portfolio re-

balancing. This is in contrast to the models that assume free entry, where the total intermediation capacity

adjusts so the dealers’ value is pinned down by the entry cost. This endogenous response of the dealer’s

value plays an important role in determining how liquidity and trading delays behave in periods of crises.

2.2.6 The liquidity-adjusted CCAPM

In Proposition 2, we provide a characterization of the risk premium in this economy.

Proposition 2. The risk premium is given by:

(�R,t − rt )dt = 

dCt
Ct

dpt
pt

−
2
∑
j=1

!cj,t
Et [d(e−�tC

−

j,t Ωj,t )]

e−�tC−
j,t pt
, (20)

where Ct denotes investors’ aggregate consumption and !cj,t is the consumption share of family j ∈ {1, 2}.

Proof. See Appendix A.2.

Expression (20) provides a liquidity-adjusted CCAPM. In the absence of liquidity frictions, Breeden’s

(1979) Consumption CAPM would hold in this economy, as Ωj,t = 0 for all investors. In the economy with

search frictions, the risk premium depends not only on the asset’s covariance with aggregate consump-

tion, but also on the distribution of the marginal value of portfolio rebalancing and how it covaries with

consumption.

An important implication of expression (20) is that the impact of liquidity frictions on asset prices is
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not summarized by the bid-ask spread. In particular, this can be seen by noticing that the parameter �, the

elasticity of the matching function, enters in the determination of the intermediation fee (see Equation 18),

while it does not enter directly into the pricing Equation (20). This suggests that we can make the bid-

ask spread as small as possible, and still, liquidity frictions would have a non-trivial e�ect on asset prices.

Therefore, a partial equilibrium analysis that focuses only on the direct impact of bid-ask spreads on returns

could severely underestimate the e�ects of liquidity frictions on asset prices.

2.2.7 Markov Equilibrium

The aggregate state variables is given by Xt = (Yt , xt , st ), where xt and st are de�ned as:

xt =
�W1,t

�W1,t + (1 − �)W2,t
, st =

�S1,t
�S1,t + (1 − �)S2,t

, (21)

and Wj,t and Sj,t denote the wealth and the number of shares of family j ∈ {1, 2}.

Besides the endowment Yt , the aggregate dynamics is described by two state variables: the share of

wealth of type-1 investors and the share of risky assets held be type-1 investors. While the wealth dis-

tribution usually appears as an aggregate state variable in heterogeneous-agent asset pricing models, it is

the joint distribution of wealth and asset holdings that is relevant in our setting. We restrict our attention

to a Markov equilibrium in state variables Xt = (Yt , xt , st ), de�ned below.

De�nition 2. A Markov equilibrium in state variables Xt = (Yt , xt , st ) is the set of functions: interdealer

price p(X ), real interest rate r(X ), dealers’ value vd (X ), individual state functions Wj(X ) and Sj(X ) for j ∈

{1, 2}, value function V (W , S, X ), policy functions {C(W , S, X ), n(W , S, X ), �(W , S, X )}, intermediation fee

�(W , S, X ), and laws of motion for state variables such that:

(i) The value function satis�es the HJB equation (12), and policy functions C and (n, �) are given by (14) and

(16), respectively.

(ii) The fee �(W , S, X ) and dealers’ value vd (X ) satisfy conditions (10) and (19), respectively.
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(iii) Markets for the consumption good, the risk-free bond, and the risky asset clear:

� (C1,t + 0.5�ptn21,t) + (1 − �) (C2,t + 0.5�ptn
2
2,t) + ptvd,td = Yt , (22)

�W1,t + (1 − �)W2,t = pt , (23)

�S1,t + (1 − �)S2,t = 1, (24)

where Cj,t = C (Wj(Xt ), Sj(Xt ), Xt), nj,t = n (Wj(Xt ), Sj(Xt ), Xt), pt = p(Xt ), vd,t = vd (Xt ),Wj,t = Wj(Xt ), and

Sj,t = Sj(Xt ).

(iv) The individual state functionsWj(X ) and Sj(X ) are determined from (21), (23), and (24).

(v) The state variable Y evolves according to (1), and the laws of motion for xt and st are given by:

dxt = [(rt − �p,t )xt + �tst −
�
2
�n21,t − �

C1,t
pt

+ �2p,t (xt − st )] dt + �p,t (st − xt ) dZt , (25)

dst = �n1,t�(�1,t )dt, (26)

where �j,t = � (Wj(Xt ), Sj(Xt ), Xt), and (�p , �p) are given by Ito’s lemma from p(Xt ).

A complete characterization of the equilibrium in this economy involves determining V (W , S, Y , x, s),

which requires solving a system of partial di�erential equations (PDEs) in �ve state variables. The pres-

ence of individual and aggregate state variables contrasts with standard settings (e.g., Brunnermeier and

Sannikov, 2014; DiTella, 2017), in which, using the homotheticity assumption, one can eliminate the de-

pendence of the value function to the individual state variables. Even though an exact solution to this

system of PDEs is not available, in the next section, we obtain an explicit analytical characterization using

state-global perturbation methods.

3 Asset Pricing Implications of Portfolio Flows

In this section, we show how portfolio �ows a�ect asset prices in our economy with search frictions. We

adopt perturbation techniques that allow us to obtain asymptotic closed-form expressions for investors’

trading behavior and equilibrium asset prices.
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3.1 State-global perturbation

We start by considering a parametric sequence of economies, indexed by � > 0, in which output is given

by:
dYt
Yt

= �dt + �
√
�dZt ,

and the capacity constraint for dealers is given by:

∫
Σ
dt (n, �)|n|d� ≤ d�.

The parameter � simultaneously controls the magnitude of the variance of endowments, �2�, and

the dealers’ intermediation capacity d�. The special case � = 0 provides a convenient benchmark where

equilibrium objects can be easily characterized. We proceed by taking a small-risk approximation, that

is, we study how the economy behaves in the neighborhood of � = 0. In particular, we are interested in

computing the following perturbation:

V (W , S, X ; �) = V ⋆(W , S, X )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
benchmark: �=0

+ Ṽ (W , S, X )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�rst-order correction

� + (�2),

where we denote V ⋆(W , S, X ) ≡ V (W , S, X ; 0) and Ṽ (W , S, X ) ≡ V�(W , S, X ; 0).

The term V ⋆(W , S, X ) corresponds to the value function in the non-stochastic benchmark, that is,

� → 0. The term Ṽ (W , S, X ) corresponds to the �rst-order correction, which is the derivative of the value

function with respect to � evaluated at � = 0. These �rst-order corrections are our main objects of interest.

We adopt an analogous notation for policy functions and remaining equilibrium objects. For instance,

consumption is given by:

C(W , S, X ; �) = C⋆(W , S, X ) + C̃(W , S, X )� + (�2).

Note that, in contrast to the common use of perturbation methods in economics, we are not imposing

that the solution is linear in the state variables.19 Instead, we allow the value function and policy functions

to depend in a non-linear way on the set of state variables. We refer to this method, which is local in the

19Standard applications of perturbation methods involve a linearization (or higher-order perturbations) around a steady state,
so the analysis is local in both the state variables and the amount of risk. We provide a detailed discussion of the state-global
perturbation techniques and the di�erences with standard linearization methods in Appendix OA.3.
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parameter �, but global in the state space, as a state-global perturbation. The global nature of this method

with respect to state variables is critical when considering the economy’s response to large shocks.

It is important to note that we scale both the endowment’s variance �2 and dealers’ intermediation

capacity d by �. This parametrization is necessary to guarantee that the liquidity frictions matter in the

case with small risk. As we reduce the endowment’s variance, the demand for trading is reduced, as the

risky and riskless assets become more similar to each other. By assuming that the intermediation capacity

is also reduced with parameter �, we ensure that the supply of liquidity is commensurate with the demand

for trading in the economy, so spreads will be positive and trading frictions will be relevant even in the

neighborhood of � = 0.

3.1.1 The benchmark economy

In Lemma 1, we characterize the zeroth-order terms in our perturbation: the benchmark (non-stochastic)

economy obtained when � = 0.

Lemma 1. Suppose � + (
 − 1)� > 0.20 Then, for the � = 0 economy, the investors’ value function and policy

functions are given by:

V ⋆(W , S, X ) = A
W 1−


1 − 

, C⋆(W , S, X ) = (� + (
 − 1)�)W , (27)

n⋆(W , S, X ) = 0, and �⋆(W , S, X ) is indeterminate, where A−
1

 = � + (
 − 1)�. Dealers’ value and orders are

given by v⋆d = 0 and d
⋆(n, �) = 0, and equilibrium prices satisfy:

�⋆R = r
⋆ = � + 
�, q⋆ =

1
� + (
 − 1)�

,

and �⋆R = 0, where qt ≡ pt /Yt is the price-dividend ratio.

Proof. See Appendix A.3.

In the economy with � = 0, there is no risk, so the two �nancial assets are essentially perfect substitutes.

The investors then has no incentive to change their initial portfolios, and there is no trade in the risky asset

in equilibrium.21 Therefore, trading frictions play no role in the determination of prices and quantities.
20The condition �+(
 −1)� > 0 is standard in economies with growth, and it goes back to Brock and Gale (1969). This condition

guarantees that the investors’ utility is well-de�ned in equilibrium.
21Note, however, that investors may still accumulate or sell riskless assets over time.
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As investors do not trade, they are indi�erent between any value of the market tightness. Dealers post no

contracts and earn no pro�ts. We obtain the standard result that consumption is linear in wealth and the

value function is a power function of wealth. Finally, because there is no aggregate risk, the risk premium

is equal to zero, and the real interest rate is constant and given by the standard condition.

3.1.2 The small-risk economy

Given the value of V ⋆(W , S, X ) and the corresponding policy functions, we are able to compute the �rst-

order approximation of the investors’ problem.22 In Proposition 3, we characterize the value function and

policy functions in the small-risk economy.

Proposition 3 (Value function and policy functions). Suppose � + (
 − 1)� > 0.

a. Value function:

Ṽ (W , S, X ) =
AW 1−


r⋆ − � [
r̃(X ) + �̃(X )

p⋆(X )S
W

−


2
�̃2R(X )(

p⋆(X )S
W )

2

]
, (28)

where r̃ (X ), �̃ (X ), and �̃2R(X ) denote, respectively, the �rst-order correction for the interest rate, risk

premium, and return variance, and p⋆(Xt ) = q⋆Yt .

b. Marginal value of rebalancing:

Ω̃(W , S, X ) =

 �̃2R(X )
r⋆ − � (

�̃(X )

 �̃2R(X )

−
p⋆(X )S
W )p⋆(X ). (29)

c. Policy functions:

C̃(W , S, X ) =
[

 − 1



r̃(X ) + �̃(X )
p⋆(X )S
W

−
(
 + 1)
2

�̃2(X )(
p⋆(X )S
W )

2

]
W (30)

�⋆(W , S, X ) = (
�

ṽd (X )
|Ω̃(W , S, X )|

p⋆(X ) )

1
1−�

(31)

ñ(W , S, X ) = � (�⋆(W , S, X ))
1 − �
�

Ω̃(W , S, X )
p⋆(X )

. (32)

Proof. See Appendix A.4.
22Because the market tightness is not de�ned at � = 0, we cannot apply the implicit function theorem to compute the �rst-order

corrections. The solution is computed instead using bifurcation methods, as discussed in Judd and Guu (2001).
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In Proposition 3, we characterize the value function in terms of the individual state variables (W , S)

and equilibrium prices (r̃ (X ), �̃ (X ), �̃R(X ), p⋆(X )). Note that the value function is concave in the portfolio

share in our model, whereas in the benchmark model, it does not depend on the portfolio share. Given the

value function, we can solve for the marginal value of rebalancing Ω. The value of Ω depends on how the

portfolio share compares with the myopic portfolio �̃ (X )

 �̃2R (X )

. For � su�ciently small, the hedging demand is

small compared to the myopic demand and can be ignored up to a �rst-order approximation. The marginal

value of rebalancing is positive when the actual portfolio share is below the target myopic portfolio, while

it is negative when the portfolio share is above the target.

Proposition 3 also shows that the consumption function depends on the investors’ portfolio position.

This result implies that, even though risk-free bonds can be traded in frictionless markets, search frictions

a�ect savings decisions and, ultimately, the economy’s interest rate. In particular, the consumption-wealth

ratio is a concave function of the portfolio share. Therefore, an increase in portfolio dispersion would

depress consumption, everything else constant, ultimately a�ecting the equilibrium real interest rate.

In Proposition 3, we also characterize the behavior of the order size and market tightness. Note that,

even though the market tightness is indeterminate when � = 0, there is a well-de�ned limit when � → 0,

which is given by �⋆(W , S, X ). As before, the investor is a buyer (seller) when the marginal value of

rebalancing is positive (negative). Moreover, the market tightness is higher when the investor is further

away from her desired portfolio.

3.2 The aggregate implications of search frictions

Next, we consider the implications of search frictions for the risk premium, risk-free rate, and market

liquidity in three propositions. We de�ne two key features of the distribution of investors asset holdings:

portfolio dispersion and asymmetry. We then derive various aspects of asset prices and market liquidity

as functions of these two features.

3.2.1 Risk premium and order �ow

From the market-clearing condition for the risky asset and the law of motion for the holdings of the risky

asset by the two types of investors, we obtain the following condition:

��(�1,t )n1,t + (1 − �)�(�2,t )n2,t = 0. (33)
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For concreteness, suppose type-1 investors start with a relatively high portfolio share, ptS1,t
W1,t

= st
xt > 1,

so they will be sellers in equilibrium. This implies that the portfolio share of type-2 investors satis�es
ptS2,t
W2,t

= 1−st
1−xt < 1, so they will be buyers in equilibrium. Combining (33) with the expressions for market

tightness and orders in (31) and (32), we obtain:

� (
s
x
−

�̃(X )

 �̃2R(X ))

1+�
1−�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Supply of shares: (�̃ ∣X )

= (1 − �)(
�̃(X )

 �̃2R(X )

−
1 − s
1 − x )

1+�
1−�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Demand for shares: (�̃ ∣X )

, (34)

for �̃ (X ) satisfying 1−s
1−x ≤

�̃ (X )

 �̃2R (X )

≤ s
x .23

Equation (34) de�nes the aggregate demand for shares in the economy, (�̃ ∣ X ), and the aggregate

supply of shares, (�̃ ∣ X ). Despite isoelastic preferences, the trading elasticity of buy and sell orders

is time-varying and depends on how far an investor is from her target portfolio.24 Note that (⋅ ∣ X ) is

increasing, convex, and it satis�es (0 ∣ X ) = 0 and (�̃ ∣ X ) → ∞ as �̃ → ∞. The order supply schedule

is decreasing, convex, and it satis�es (�̃ ∣ X ) → 0 as �̃ → ∞ and (�̃ ∣ X ) > 0 as �̃ → 0. Therefore,

there exists a unique value of �̃ that satis�es the market-clearing condition. The right panel of Figure 2

shows the supply and demand schedules for a given point in the state space, represented by the dot in the

left panel. Note that because we are expressing orders as a function of the risk premium, instead of the

price of the risky asset, the demand for shares is the upward-sloping curve, and the supply of shares is the

downward-sloping curve in Figure 2. In Proposition 4, we give an explicit solution for the risk premium

in terms of investors’ portfolio positions.

Proposition 4 (Risk premium and investors’ portfolios). Suppose � + (
 − 1)� > 0. The risk premium is

given by:

�̃ (X ) = [�̃
s
x
+ (1 − �̃)

1 − s
1 − x ]


 �̃2R(X ), (35)

where �̃ = �
1−�
1+� [�

1−�
1+� + (1 − �)

1−�
1+� ]

−1
.

Proof. See Appendix A.5.

Proposition 4 shows how the risk premium depends not only on the components typically emphasized

23Note that (�̃ ∣ X ) = 0 if �̃ (X )

 �̃2R (X )

< 1−s
1−x and (�̃ ∣ X ) = 0 if �̃ (X )


 �̃2R (X )
> s

x , so the risk premium must satisfy 1−s
1−x ≤ �̃ (X )


 �̃2R (X )
≤ s

x in
equilibrium.

24In Appendix OA.4, we show that relatively inelastic demand for shares is associated with high risk premium ampli�cation,
consistent with Gabaix and Koijen (2020).
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Figure 2. The left panel of this �gure depicts the state space. The blue line shows the points where there is no trade and the
vertical line shows the points where there is positive trade but no ampli�cation. The right panel shows the determination of the
risk premium as the intersection of the supply and demand for shares.

by asset pricing theory, such as risk �̃2R(X ) and risk aversion 
 , but also on the investors’ portfolios. In the

absence of search frictions, the distribution of portfolio holdings would not matter for the determination

of asset prices, and the risk premium would be given by the standard formula 
 �̃2R(X ).

Relative to the frictionless case, the economy may feature ampli�cation or dampening of the risk pre-

mium. There are two benchmark cases where the risk premium coincides with the one in the frictionless

economy. First, the case where s = x , represented by the 45 degree line in the left panel of Figure 2. The

portfolio share is equal to 1 for both investors in this case, and there is no trade. In the absence of frictions,

investors would immediately adjust their portfolio to hold 100% of the risky asset, as investors have no

incentive to borrow or lend given the assumption of common beliefs and risk aversion. If investors happen

to start with a portfolio share of 100%, they have no incentive to trade and the economy with search fric-

tions behaves e�ectively as a representative-agent economy. Second, the case in which x = �̃ , represented

by the vertical line in the left panel of Figure 2. Even though there is positive trade, there are no e�ects in

the risk premium.

To better understand when positive trade can lead to e�ects on expected returns, it is useful to consider

portfolio dispersion and asymmetry as de�ned below.

De�nition 3. We de�ne portfolio dispersion, Δ, and (intensive-margin) portfolio asymmetry, a, as follows:

Δ ≡
||||
s
x
− 1

||||
+
||||
1 − s
1 − x

− 1
||||
, a ≡

||||
s
x
− 1

||||
−
||||
1 − s
1 − x

− 1
||||
.
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Portfolio dispersion measures how far investors are from their desired portfolio and it corresponds to the

di�erence in their portfolio share, Δ = s
x −

1−s
1−x in the case s > x . Portfolio asymmetry captures the relative

distance of sellers and buyers to their desired portfolio. For instance, if s/x = 1.5 and (1 − s)/(1 − x) = 0.5,

then there is positive dispersion, Δ = 1.0, but there is no asymmetry, a = 0, as buyers and sellers are

equidistant to their (long-run) target portfolio.

We can express the risk premium in terms of portfolio dispersion and asymmetry:

�̃ (X ) = [1 + (�̃ −
1
2)

Δ +
a
2]


 �̃2R(X ), (36)

assuming s > x for concreteness.

The intuition behind Equation (36) is as follows. Consider the case where � = 0.5, so there is an equal

number of buyers and sellers. In this case, there is no ampli�cation if a = 0, that is, buyers and sellers are

equally distant from their target portfolio. Buyers and sellers then have an equal in�uence on the market

and prices coincide with those in a representative-agent economy. We obtain ampli�cation if sellers are

disproportionately further away from their target portfolio, that is, a > 0. This corresponds to the set of

points to the left of the vertical line and above the 45 degree line in Figure 2. This situation characterizes net

selling pressure in the market. The representative-agent price is not enough to induce buyers to absorb

this selling pressure, so the price needs to go down, which increases the risk premium. Therefore, the

results suggests that portfolio �ows and selling pressure play a key role in determining the risk premium

in the presence of search frictions.

Second, consider now the case where � > 0.5, but a = 0, so buyers and sellers are equidistant from

the target portfolio. In this case, there is a large number of sellers in the market, which again creates

net selling pressure and ampli�cation. This situation captures an asymmetry in orders on the extensive

margin, while the case � = 0.5 and a > 0 capture asymmetry on the intensive margin. Risk premium

ampli�cation depends then on the asymmetry between investors in the market.

3.2.2 Interest rate

Having determined the level of the risk premium, we next consider the behavior of interest rates. Aggre-

gating the individual consumption decisions and using the market-clearing condition for goods allows us

to obtain the level of the interest rate. In Proposition 5, we characterize the risk-free rate in our setting.
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Figure 3. This �gure shows the risk premium (left panel) and the interest rate (right panel) as functions of the wealth share x for
di�erent values of the asset share s. The risk premium is normalized by the value of the risk premium in a representative agent
economy.

Proposition 5 (Interest rate). The risk-free interest rate is given by:

r(X ) = � + 
� −

(
 + 1)

2 [x (
s
x )

2
+ (1 − x) (

1 − s
1 − x )

2

] �̃
2
R(X )� + (�2). (37)

Proof. See Appendix A.6.

In the case where investors reached their desired portfolio, s = x , the expression in Equation (37) boils

down to the standard condition for the interest rate in a frictionless economy. As investors’ portfolios

deviate from this benchmark, we �nd that there is a reduction in interest rates relative to the frictionless

economy through an ampli�cation of the precautionary savings motive. In particular, we can show that

the interest rate is decreasing in the degree of dispersion in investors’ portfolios.25 This result re�ects the

concavity of the consumption function on the portfolio share. An increase in the dispersion of portfolios

leads to a reduction in aggregate consumption in the absence of any price reaction. The interest rate then

goes down to restore the equilibrium. The right panel of Figure 3 shows the behavior of the interest rate

as a function of x for di�erent values of s. The �gure shows that the interest rate is maximized at the point

x = s, so portfolio shares are equalized across investors.

25Note that x ( s
x )

2+(1−x) ( 1−s
1−x )

2 = Varx [ S
W ]+1, where Varx [ S

W ] is the cross-sectional variance of the portfolio share weighted
by the corresponding wealth share. Therefore, an increase in the variance of the portfolio share reduces the interest rate.
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3.2.3 Volatility

In Appendix OA.1.3, we derive the expression for return volatility and show that time-varying volatility

requires a higher-order correction. Up to the �rst-order, volatility is constant and given by �̃R(X ) = � . A

time-varying endogenous volatility is obtained when considering a second-order approximation.

We also �nd that the sign of the second-order term for the endogenous volatility is ambiguous. As

we can seen from the left panel of Figure 3, the risk premium moves in the opposite direction to the

interest rate for most of the state space. The opposing e�ects of the risk premium and the interest rate are

typically present even in frictionless asset pricing models, and they determine the degree of ampli�cation

in volatility. If a negative shock increases the risk premium by more than it reduces the interest rate, then

the discount rate increases, which ampli�es the e�ect of the negative shock. In frictionless asset pricing

models, a high elasticity of intertemporal substitution (EIS) implies that the risk premium e�ect dominates.

In an economy with search frictions, however, the EIS is not su�cient to pin down which e�ect dominates,

as it is possible for the interest e�ect to dominate even in the high-EIS case.

3.2.4 Market liquidity

In Proposition 6, we characterize the response of volume traded, bid-ask spreads, dealers’ value, and trading

delays.

Proposition 6 (Market liquidity). Suppose � + (
 − 1)� > 0 and let Δ ≡ ||
s
x −

1−s
1−x

|| denote portfolio dispersion.

a. Volume traded is determined as follows:

V(X) = VΔ
1−�
1+� ,

where V is a positive constant de�ned in the Appendix.

b. Dealers’ value is determined by the following:

ṽd (X ) = [
1 − �
��d (

� (
�|Ω̃1|
p⋆(X ))

2
1−�

+ (1 − �)(
�|Ω̃2|
p⋆(X ))

2
1−�

)]

1−�
1+�

= vdΔ
2
1+� , (38)

where Ω̃j is the marginal value of rebalancing for investor of type j ∈ {1, 2}, and vd is a positive constant

de�ned in the Appendix.
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c. Bid-ask spread is determined by:

�̃ba(X ) =
�
�2

r⋆ − �
Δ.

d. Market tightness of investor j, j ∈ {1, 2}, is given by:

�⋆j (X ) = � jΔ
− 1
1+� ,

where � j is a positive constant de�ned in the Appendix.

Proof. See Appendix A.7.

Volume traded V(X), de�ned as the total number of shares traded at a given point in time, is increasing

in the portfolio dispersion. The higher the di�erences in the portfolios, the more distant investors are from

their target portfolio, and the higher the demand for trade. We show in Appendix A.7 that parameters

a�ect the volume traded in the expected manner: volume is increasing in the e�ciency of the matching

function � and in the dealers’ intermediation capacity d , and it is decreasing in the investor’s adjustment

cost parameter � . Interestingly, volume responds positively to the level of risk and risk aversion, as this

leads to an increase in the risk premium and also the bene�ts of trading the risky asset.

Figure 4 shows the behavior of volume as a function of the wealth share x for di�erent values of the

asset share s. The behavior of volume is highly non-linear in the state variables. As we approach the point

x = s, there is no incentive to trade and the volume goes to zero. As we move away from this point, volume

increases quickly, indicating that the volume induced by this rebalancing motive is particularly relevant

for large shocks.

The dealer’s value ṽd (X ) is increasing in the dispersion of the marginal value of rebalancing and,

ultimately, on the dispersion of portfolios. Similarly, the bid-ask spread �̃(X ) is also increasing in the

portfolio dispersion. Given the dealers’ limited intermediation capacity, an increase in the demand for

trading leads to an increase in transaction costs and an increase in the dealers’ pro�ts.

Figure 4 also shows the behavior of the dealers’ value and of the bid-ask spread. Analogous to trading

volume, the dealers’ value and the bid-ask spread are both highly non-linear functions of the state variables.

Both variables are close to zero in the neighborhood of x = s and they increase sharply as we move away

from the point of no-trade.

Portfolio dispersion also has an implication for the second dimension of market liquidity: trading
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Figure 4. This �gure shows the volume traded (top-left panel), dealers’ value (top-right panel), the bid-ask spread (bottom-left
panel), and trading delay (bottom-right panel) as functions of the wealth share x for di�erent values of the asset share s. Trading
delay is de�ned as the inverse of �(�) for the type-1 investor.

delays, which is de�ned as the inverse of the arrival rate �(�). An increase in portfolio dispersion leads

to an increase in trading delays. Note that there are opposite forces a�ecting the investors’ choice of

market tightness, as can be seen from Equation (31). First, investors choose faster trading when they are

further away from their target portfolio. Second, the increase in trading costs induces investors to switch

to cheaper and slower trades. In equilibrium, the second force dominates. The reason is that, given the

limited intermediation capacity of dealers, it is not possible to simultaneously increase the trading volume

and trading speed for all investors. The cost of trading must then increase enough to induce investors

to choose instruments with a longer execution time. This is consistent with the deterioration in liquidity

conditions and the shift towards slower trades documented in Kargar et al. (2020). Note that we would not

obtain this result with a free-entry condition for dealers, as vd would be pinned down by the entry costs,

and only the �rst force would be at play.
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3.3 Countercyclical portfolio asymmetry and dispersion

In this section, we show that portfolio asymmetry and dispersion are countercyclical, so negative shocks

will trigger asset prices and liquidity responses in line with the empirical evidence.

The left panel of Figure 5 presents portfolio dispersion and asymmetry, as de�ned in De�nition 3, as

a function of x , given s = 0.5. We plot the di�usions of these two measures, that is, their exposures to

the aggregate shock in the right panel. For all values of x , the di�usion terms are negative, so asymmetry

and dispersion increase endogenously in response to a negative shock. For instance, the di�usion term for

portfolio dispersion, �̃Δ,t , for s > x is determined as follows:

�̃Δ,t = − [
s
x2

+
1 − s
(1 − x)2 ]

(s − x)� < 0,

using the fact that the di�usion of x satis�es �̃x = (s − x)� .

Intuitively, a negative shock increases (decreases) the portfolio share of type-1 (type-2) investors in-

creasing portfolio dispersion. As the negative shock a�ects the leveraged investor disproportionately more,

it also increases asymmetry. As illustrated by Figure 5, these e�ects are particularly relevant for large

shocks. In the neighborhood of s = x , asymmetry and dispersion are not very sensitive to changes in the

aggregate shock, so small shocks would have a limited impact on aggregate variables. Therefore, trading

frictions have only a small impact on asset prices during normal times when asymmetry and dispersion are

low, and the market is liquid with low transaction costs. In crisis periods, when asymmetry and dispersion
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are high, the market liquidity deteriorates, and trading frictions have a large e�ect on asset prices.

4 Quantitative Implications of the Model

In this section, we study the quantitative implications of the model in the long run and assess its dynamic

response to a large adverse shock. First, we extend the model to allow for heterogeneity in investors’

risk aversion, which is crucial for search frictions to have a long-run impact on the economy. Next, we

calibrate the model to match key asset pricing and secondary market moments from the corporate bond

market. Finally, in response to a large negative shock, we show that the model can generate asset pricing

and market liquidity dynamics consistent with the evidence from the COVID-19 crisis.

4.1 Heterogeneous target portfolios.

An important feature of the economy we have considered so far is that search frictions have no impact

on investors’ trading behavior in the long-run. Investors eventually reach their frictionless portfolios (i.e.,

s = x) so both agents invest the same fraction of their wealth in the risky asset. In the long run, portfolios

do not react to aggregate shocks and the model behaves as if there is a representative agent. Therefore,

liquidity frictions have only a transient e�ect, as eventually the economy converges to the point of no

trade.

To explore the long-run asset pricing implications of trading frictions, we augment the model by intro-

ducing heterogeneous risk aversions for investors. We assume that investors have stochastic di�erential

utility, as in Du�e and Epstein (1992), the continuous-time analog of the recursive preferences of Epstein

and Zin (1989). We also assume that agents have di�erent risk aversions, 
1 ≤ 
2, but they have the same

elasticity of intertemporal substitution (EIS)  . To guarantee that a (non-degenerate) stationary distri-

bution of wealth exists, we assume that investors exit with intensity �. Therefore, for an investor i who

belongs to family j ∈ {1, 2}, preferences are given by:

Vi,t = Et [∫
∞

t
fi(Ci,s , Vi,s)ds] ,
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where

fi(C, V ) = �
(1 − 
j)V
1 −  −1

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

⎛
⎜
⎜
⎝

C

((1 − 
j)V )
1

1−
j

⎞
⎟
⎟
⎠

1− −1

− 1

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

.

In Proposition 7, we extend the characterization of the equilibrium to a case with heterogeneous risk

aversions. To avoid repetition, we report the results for only a few selected equilibrium objects and leave

a more detailed description of the economy with heterogeneous preferences to Appendix A.9.

Proposition 7 (Heterogeneous risk aversions). Suppose � + ( −1 − 1)� > 0.

a. Marginal value of rebalancing is given by:

Ω̃j(W , S, X ) =

j �̃2R(X )
r⋆ − � (

�̃(X )

j �̃2R(X )

−
p⋆(X )S
W )p⋆(X ).

b. Risk premium is given by:

�̃ (X ) = [�̃
1
s
x
+ (1 − �̃)
2

1 − s
1 − x ]

�2

c. Bid-ask spread is determined using the following:

�̃ba =
�

r⋆ − �
||||

1
s
x
− 
2

1 − s
1 − x

||||
�2.

Proof. See Appendix A.8.

The target portfolio now depends on the investors’ risk aversion, �̃ (X )

j �̃2R (X )

. Investors with low risk aver-

sion have a higher target portfolio and operate with leverage in equilibrium. The determination of the risk

premium is analogous to the one in the case with homogeneous preferences, but the e�ective weights on

the portfolio shares are now �̃
1 and (1−�̃)
2, which creates another source of asymmetry across investors.

Finally, the bid-ask spread is now proportional to the di�erence of risk-aversion-adjusted portfolio shares,

or equivalently, to the di�erence in the relative distance to the target portfolio.

The law of motion of the wealth share is given by:

�̃x (X ) = [(x − s)�
2 +

 + 1
2

�2x(1 − x)(
1 (
s
x )

2
− 
2 (

1 − s
1 − x )

2

)] − �(x − �),

where � denotes the mortality rate and �̃x (X ) = (s − x)� .
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We can de�ne a stochastic steady state as the point where �̃x (X ) = �̃s(X ) = 0, so equilibrium variables

remain constant in the absence of shocks. In the case of homogeneous preferences, this point corresponds

to x = s = � , where investors have reached their desired portfolios, and they have no incentive to trade.

Moreover, we have that �̃x (X ) = 0, so the stochastic steady-state is an absorbing state. If the economy

ever reaches this point, it would stay there forever. In the case of heterogeneous preferences, the portfolio

share of both investors will be equal to their target portfolio only if 
1 s
x = 
2

1−s
1−x . This implies that type-

1 investors operate with leverage in the stochastic steady state; thus, their wealth share has a positive

exposure to risk, �̃x (X ) > 0. Therefore, with heterogeneous risk aversions, the stochastic steady state is no

longer an absorbing state, and liquidity frictions impact equilibrium outcomes even in the long run.

4.2 Calibration

Table 1 lists the parameter values used in calibrating the model with heterogeneous risk aversions. Con-

sistent with Gârleanu and Panageas (2015), we choose � = 0.02 and � = 0.04, the drift and di�usion of

the aggregate endowment, so that time-integrated data from the model can approximately match the �rst

two moments of annual U.S. consumption growth. We set the elasticity of intertemporal substitution to

 = 1.5, consistent with the asset pricing literature (e.g., Bansal and Yaron, 2004). Following Gârleanu and

Panageas (2015), the share of high-type agents in the population is set to � = 0.01. We set risk aversion

coe�cients 
1 and 
2, the subjective discount rate �, and agents’ entry and exit rate � to match the un-

conditional equity premium (on the levered claim) of approximately 7% (consistent with Barro, 2006), a

wealth-weighted average risk aversion of at most 10, the leverage of high-type agents of around 5, and an

average real interest rate between 1-1.5%.

We use three moments from the corporate bond market to calibrate the remaining parameters from the

model.26 We target the transaction costs in the secondary market before the COVID crisis from O’Hara and

Zhou (2020), which is approximately 40 bps, to identify the concavity of the matching function �. Targeting

the annual turnover of corporate-to-dealer trades, which is approximately 0.2 in the TRACE data before

the onset of the COVID-19 crisis, we calibrate the portfolio adjustment cost parameter � . Parameters � and

d that determine the e�ciency of the matching function and dealers’ intermediation capacity, respectively,

26The risky asset in our model is an unlevered claim on the aggregate output, corresponding to a portfolio of (levered) equity
and a risky bond. This implies that we will likely underestimate the response of the risk premium to a large negative shock. As
shown in Merton (1974), the volatility of the corporate bond responds to a negative shock by more than the volatility of the �rm
value. By focusing on an unlevered claim on the �rm, we obtain a lower bound on the risk premium response of corporate bonds.
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Table 1. Parameter values

This table reports the parameter values used in calibrating the model.

Parameter Choice

Preferences & distribution

 Elasticity of intertemporal substitution 1.5

1 Risk aversion of high-type 1.8

2 Risk aversion of low-type 10.25
� Rate of time preference 0.038
� Agents’ entry/exit rate 0.32
� Share of high-type agents 0.01

Technology

� Endowment growth rate 0.02
� Endowment volatility 0.04

Trading

� Concavity of the matching function 0.89
� Portfolio adjustment cost parameter 1.40
� E�ciency of the matching function 1.00
d Dealers’ intermediation capacity 0.64

cannot be separately identi�ed. So, we normalize � to one and calibrate d to match the contact frequency

of customers and dealers in the corporate bond market. Following Hugonnier, Lester, and Weill (2020), we

calibrate d so that a customer contacts a dealer every �ve days.

4.3 Quantitative impacts of search frictions

In Table 2, we compare the unconditional moments and targets in the data and the model with and without

search frictions. Comparing columns (1) and (2), the baseline model with search frictions closely matches

the three target moments from the corporate bond market. The model generates average transaction costs

of 38 bps, an annual turnover of 0.2, and a customer-dealer contact frequency of 5.4 days. Moreover, the

model with frictions generates an equity premium of 7.1%, a real interest rate of 1.2%, and a leverage

of 5.3 for the high-type agents. The baseline model creates a substantial endogenous volatility through

ampli�cation of the exogenous risk. In contrast, the frictionless model in column (3) can generate a risk

premium of only 2.4%, about three times lower than the one in the baseline model.

The result above shows that search frictions are quantitatively important for the model to generate a

level of risk premia consistent with the data. This conclusion contrasts with the �ndings of Constantinides
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Table 2. Unconditional moments and targets from the data and the model

This table presents the unconditional moments from the data and the model with and without search frictions. In column (2), we
present the results in our baseline model with search frictions. In column (3), we shut down search frictions and present results
in a frictionless model.

Baseline Frictionless
Moment Data/Target Model Model

(1) (2) (3)

Average corp. bond trading costs (bps) 40 38 0
Annual turnover for customer-dealer corp. bond trades (%) 0.2 0.2 -
Average customer-dealer contact frequency (days) 5 5.4 -
Average equity premium (%) 7.0 7.1 2.4
Average real interest rate (%) 1.0-1.5 1.2 3.8
Average wealth-weighted risk aversion ≤10 9.5 9.5
Leverage of high-type agents 5 5.3 5.3

(1986) who shows that liquidity frictions have only a limited e�ect on asset prices in a partial equilibrium

model with exogenous transaction costs. In his model, investors substantially reduce their trading activity

in the presence of frictions so that they can economize on transaction costs leading to a small liquidity

premium.27 Constantinides’s (1986) result, however, only captures the direct e�ect of transaction costs.

In our setting, the reduction in trading activity caused by transaction costs leads to asset misallocation,

as investors’ portfolio holdings deviate from their target. This asset misallocation by itself has an impact

on asset prices. This e�ect is not present in a partial equilibrium setting, highlighting the importance of

adopting a general equilibrium framework to fully capture the implications of liquidity frictions.28

4.4 Equilibrium dynamics after a large shock

Next, we consider the quantitative impact of a large negative shock on the economy with heterogeneous

risk aversions. We initialize the economy at the stochastic steady state; that is, the state variables are

given by (x, s) = (x, s). We consider a shock that increases the bid-ask spread by a factor of 10, roughly the

magnitude observed during the COVID-19 crisis. Figure 6 shows the conditional expectation of the risk

premium, the interest rate, the bid-ask spread, and trading volume t weeks ahead. The grey area represents

one standard deviation bands computed using each variable’s conditional distribution t periods ahead.

27Note that we also �nd a substantial reduction in trading activity in our model with search frictions. In particular, we obtain
trading strategies of bounded variation while trading in frictionless models has unbounded variation.

28The emphasis on the equilibrium implications of trading costs is also shared by Lo, Mamaysky, and Wang (2004), who study
the impact of exogenous �xed costs on trading volume and asset prices.
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Figure 6. This �gure shows impulse-response functions of the risk premium, interest rates, bid-ask spreads, and trading volume
in response to a negative aggregate shock. Risk premium, bid-ask spread, and volume are reported as a ratio to their value at the
stochastic steady state. Interest rate is reported as the di�erence to its level in the stochastic steady state. Time is expressed in
weeks. The shaded areas indicate one standard deviation bands.

We observe that the model can capture the market reaction during the COVID-19 crisis discussed in

Section 1: the risk premium, bid-ask spreads, and trading volume increase, while the interest rate declines.

As discussed in Subsection 3.3, following a large adverse shock, portfolio dispersion and asymmetry en-

dogenously increase. The increase in portfolio asymmetry explains the rise in the risk premium, while

higher dispersion leads to a reduction of the real interest rate. Investors have stronger incentives to re-

balance their portfolio with higher dispersion, leading to increased trading volume. Higher demand for

transaction services results in a rise in trading costs given the limited intermediation capacity.

The model can also quantitatively capture the market liquidity dynamics described in Section 1, while

generating a substantial movement in asset prices. The bid-ask spread increases by 10-fold, as the volume

is about 20% higher than its pre-crisis level, consistent with the evidence in Kargar et al. (2020). The shock

leads to a 25% increase in the risk premium, and interest rates go to approximately zero on impact.

5 The Case of an In�nite-dimensional State Space

So far, we have considered the characterization of the economy under the big-family assumption, Assump-

tion 1, so investors can diversify the order execution risk. The main advantage of making this assumption
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is that the joint distribution of wealth and portfolios can be easily summarized by only two variables: the

wealth share x and the share of risky assets s of type-1 investors. In practice, however, investors in OTC

markets face uncertainty on whether they can trade immediately. It is important then to consider the case

where investors bear the order execution risk in equilibrium. In this case, even when investors start at the

same initial conditions, they may end up at di�erent levels of wealth and risky asset shares depending on

when they could trade. The aggregate state variables in the economy with order execution risk will be an

in�nite-dimensional object: the entire joint distribution of wealth and asset shares, which we denote by

G(x, s).

Such a problem is typically intractable using standard solution methods. The state-global perturbation

techniques discussed above apply in this more general case as well. This enables us to extend our results to

an economy with order execution risk. In particular, we show below that the results in Proposition 3 also

hold in this more general environment. Given the individual trading behavior, from the market-clearing

condition for the risky asset, we obtain the following expression:29

∫
∞

�̃ (X )

�2

(! −
�̃(X )

�2 )

1+�
1−�

dH(! ∣ X )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(�̃ ∣X )

= ∫

�̃ (X )

�2R(X)

0 (
�̃(X)

�2

− !)

1+�
1−�

dH(! ∣ X )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(�̃ ∣X )

,

where H(! ∣ X ) is the distribution of portfolio shares in the economy induced by G(x, s).

Note that (⋅ ∣ X ) is increasing, convex, and satis�es (0 ∣ X ) = 0 and (�̃ ∣ X ) → ∞ as �̃ → ∞.

Analogously, (⋅ ∣ X ) is decreasing, convex, and satis�es (0 ∣ X ) > 0 and (�̃ ∣ X ) → 0 as �̃ → ∞.

Therefore, there exists a unique value �̃ (X ) that satis�es (�̃ (X ) ∣ X ) = (�̃ (X ) ∣ X ). In contrast to the

two-type case, changes in the risk premium a�ect not only the magnitude of buy and sell orders but also the

mass of agents who are buyers and sellers. Therefore, the aggregate conditions now a�ect the magnitude

of the selling pressure via the extensive margin. In the two-type case, the selling pressure depends only

on the concavity of the matching function and the share of type-1 agents.

In Proposition 8, we extend the results on interest rates and market liquidity for a general distribution

G(x, s).

Proposition 8 (In�nite-dimensional state space). Suppose � + (
 − 1)� > 0 and investors are subject to order

29For ease of exposition, we again consider the case of homogeneous preferences. We provide a complete derivation of the
case with heterogeneous preferences and order execution risk in Appendix A.9.
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execution risk.

a. Interest rate is determined by the following expression:

rt = � + 
� −

(
 + 1)

2 ∫ (
s
x )

2
xdG(x, s)�̃2R(X )� + (�2).

b. Intermediation fee is given by the following expression:

�̃(x, s ∣ X ) = �Ω̃(x, s ∣ X ),

where Ω̃(x, s ∣ X ) = p⋆ 
�2
r⋆−� [

�(X)

�2 −

s
x ].

c. Dealers’ value is determined by the following expression:

ṽd,t = [
1 − �
��d ∫ (

|Ω̃(x, s)|
p⋆ )

2
1−�

dG(x, s)
]

1−�
1+�

.

Proof. See Appendix A.9.

Similar to the results under Assumption 1, the interest rate is decreasing in portfolio dispersion. For-

mally, a mean-preserving spread of the (wealth-weighted) distribution of portfolio shares leads to a re-

duction of the interest rates. The intuition is the same as in the previous case: given the concavity of

the consumption function on the portfolio share, an increase in portfolio dispersion leads to a decline in

interest rates to compensate for the drop in aggregate demand.

Intermediation fees depend on the distance of the investor’s portfolio to the (myopic) target. Port-

folio dispersion also plays an important role in determining the dealers’ pro�tability. Formally, a mean-

preserving spread of the distribution of portfolios leads to an increase in the dealers’ value function ṽd,t .

An increase in portfolio dispersion implies a higher demand for trading. Given the limited intermediation

capacity, this high demand leads to an increase in dealers’ pro�ts in equilibrium.

6 Conclusion

The COVID-19 crisis and the unprecedented interventions by the Federal Reserve highlight the need for

a uni�ed framework to study the impacts of large adverse shocks on asset prices and market liquidity and
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to evaluate the implication of the policy aimed to improve market conditions.

This paper presents an asset pricing model with risk-averse investors, unrestricted asset holdings, and

(competitive) search frictions that allow us to jointly study the risk premium, risk-free rate, and market

liquidity in general equilibrium. To tackle this highly intractable problem, we propose a new methodology,

state-global perturbations, that allows us to characterize the equilibrium analytically despite the presence

of an in�nite-dimensional state space. After a large negative shock, the calibrated model generates asset

pricing and trading dynamics consistent with the empirical evidence during the market turmoil in March

2020.

While this paper is an important �rst step to introduce risk premia in workhorse search models, much

work remains to be done. One potentially interesting topic is to examine the implications of balance sheet

costs and risk considerations to understand the source of dealers’ unwillingness to intermediate during

crisis periods. We also believe that our state-global perturbation techniques can be potentially applied to

various economic settings in which a high-dimensional state space makes existing solution methods less

suitable. Incomplete market models with rich heterogeneity, �nancial frictions, and aggregate risk is a

potential application.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. Step 1: Envelope condition of the HJB with respect to S. Di�erentiating the Hamilton-Jacobi-

Bellman equation (12) with respect to S, we obtain:

�VS = VW p(�R − r) + VWW�2Rp
2S + VWX�Xp�R +VS , (A.1)

where  represents the Dynkin operator, and we omit the investor i and time subscripts.

Step 2: Feymann-Kac. Applying the Feymann-Kac solution to equation (A.1), we obtain:

VS,t = Et [∫
∞

t
e−�(s−t)VW,sps�2R,s (

�R,s − rs
�2R,s

+
VWW,s

VW,s
psSs +

VWX,s

VW,s

�X,s
�R,s )

ds] .

Dividing the expression above by VW,t and using the condition VW = C−
 , we obtain

Ω(Wt , St , Xt ) = Et [∫
∞

t

e−�(s−t)C−
s
C−
t

ps
Vs �
2
R,s (Targets −

psSs
Ws )

ds] ,

where we used the de�nitions:

Targets ≡
�R,s − rs

Vs �2R,s

+
VWX,s


Vs VW,s

�X,s
�R,s

, 
Vs ≡ −
VWW,sWs

VW,s
.

A.2 Proof of Proposition 2

Proof. Step 1: We can re-write (A.1) as follows:

0 =
Et [d(e−�tVS,t )]
e−�tVW,tpt

+ (�R,t − rt )dt + [
VWW,t

VW,t
�R,tpS +

VWX,t

VW,t
�X,t] �R,tdt, (A.2)
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where we omit the investor subscript i.

Step 2: Applying Ito’s lemma to VW,t , we obtain:

dVW,t − Et [dVW,t ] = [VWW,t�R,tptSt + VWX,t�X,t ] dZt . (A.3)

Step 3: Combining (A.2) and (A.3), and the optimality condition C−
t = VW,t , we obtain:

(�R,t − rt )dt = 

dCj,t
Cj,t

dpt
pt

−
Et [d(e−�tC

−

j,t Ωj,t )]

e−�tC−
j,t pt
.

Step 4: Aggregating across families, we obtain:

(�R,t − rt )dt = 

dCt
Ct

dpt
pt

−
2
∑
j=1

!cj
Et [d(e−�tC

−

j,t Ωj,t )]

e−�tC−
j,t pt
,

whereCt denotes investors’ aggregate consumption,Cj,t is the consumption of family j, and!c1,t ≡ �C1,t /Ct , !2,t ≡

(1 − �)C2,t /Ct denote the consumption share of families 1 and 2, respectively.

A.3 Proof of Lemma 1

Proof. We �rst consider the investors’ problem when � = 0, given prices. Then, we solve the dealers’

problem and solve for equilibrium prices.

Step 1: Value Function and Policy Functions. Consider the economy where � = 0. We assume initially

that the interest rate r⋆(X ) and price-dividend ratio q⋆(X ) = p(Xt )
Yt are constant. Moreover,

�⋆X (X ) = �
⋆
X (X ) = �

⋆
R (X ) = �

⋆
R (X ) − r

⋆(X ) = 0.

We show below that these properties hold in equilibrium. In this case, the investors’ problem can be written

as:

�V = max
C,n,�

C1−


1 − 

+ VW [rW −

1
2
p�n2 − C − vd�p|n|] + VSn�(�).
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We then guess-and-verify that the value function is given by V ⋆(W , S, X ) = AW 1−


1−
 . Since V ⋆
S = 0, then

it is optimal to have n⋆ = 0. Plugging n⋆ = 0 into the expression above, we obtain that the investor is

indi�erent between any value of � . Consumption is given by C⋆(W , S, X ) = A−
1

W . Plugging the value of

n⋆ and C⋆ into the HJB equation, we obtain:

A−
1

 =

1


� + (1 −

1

 )

r⋆. (A.4)

Step 2: Asset Prices. Using the fact that n⋆i,t = Π⋆d,t = 0 and the expression for the consumption-wealth

ratio, we can write the market-clearing condition for goods as follows:

∫
1

0
A−

1

Wi,tdi = Yt , ∫

1

0
Wi,tdi = pt . (A.5)

Using the de�nition of the price dividend ratio, the consumption wealth ratio (A.4), market clearing of

goods and risky assets (A.5), and we obtain the price-dividend ratio when � = 0 which is given by:

q⋆ =
1

1

 � + (1 −

1

 ) r

⋆
. (A.6)

Given that the price-dividend ratio is constant, we know that dpt
pt =

dYt
Yt = �dt . Using the fact that the risk

premium is equal to zero, we obtain the risk free rate as:

Yt
pt
+
1
pt
dpt
dt

=
1
q⋆

+ � = r⋆ ⟹ r⋆ = � + 
�.

The consumption-wealth ratio and the dividend yield are then given by:

A−
1

 =

1
q⋆

= � + (
 − 1)�.

Step 3: Dealers’ Problem. Consider a contract & = (n, �), where n ≠ 0. Given that there is no value of �

which will generate a strict improvement over V ⋆(W , S, X ), then �t (&) = ∞ and �(�(&))
�(&)) = 0, according to

(8). This implies that the expected pro�t of the dealer is zero and the capacity constraint is not binding,

that is, v⋆d = 0.
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Step 4: Aggregate State Variables. The law of motion of xt , equation (25), satis�es:

dx = x [r
⋆ − � − A−

1

 ] dt,

where we used �x = � = n1 = 0. Using the fact that r⋆ − � = A−
1

 , we obtain �⋆x = 0. Finally, since n⋆1 = 0,

we have that �⋆s = 0. Therefore, the drift and di�usion terms of (x, s) are equal to zero when � = 0.

A.4 Proof of Proposition 3

Proof. Step 0: Standardizing the HJB. The HJB equation is given by:

�V = max
C,n,�

C1−


1 − 

+ VW [rW + �pS −

1
2
p�n2 − C − vd�p|n|] + VSn�(�) + VX �X

+
1
2
VWW�2R(pS)

2 + pS�RVWX�X +
1
2
� ′XVXX�X . (A.7)

We guess and verify that the value function can be written as:

V (Wt , St , Xt ) = Y
1−

t V̂ (

Wt

Yt
, St , X̂t) , (A.8)

where X̂t ≡ (xt , st ) denote the aggregate state variables besides Yt . Inserting (A.8) into (A.7), after several

steps of algebra, we can write the HJB equation in terms of the scaled variables:

�⋆V̂ = max
Ĉ,n,�

Ĉ1−


1 − 

+ V̂Ŵ [(r + 
�

2 − �) Ŵ + (� − 
��R)qS −
1
2
q�n2 − Ĉ − vd�q|n|] + V̂Sn�(�)

+ V̂X̂ (�X̂ + (1 − 
)��X̂ ) +
1
2
V̂Ŵ Ŵ (�RqS − �Ŵ)

2
+ (�RqS − �Ŵ )V̂Ŵ X̂�X̂ +

1
2
� ′X̂ V̂X̂ X̂�X̂ ,t +


(
 − 1)�2

2
V̂ ,

(A.9)

where �⋆ ≡ � + (
 − 1)�, Ŵt ≡ Wt
Yt , and Ĉt ≡ Ct

Yt .

Step 1: Write Aggregate Variables in Terms of �. A �rst-order approximation of the aggregate variables
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in � gives the expressions:

�X (X , �) = �⋆X (X ) + �̃X (X )� + o(�), �q(X , �) = �⋆q (X ) + �̃q(X )� + o(�), �R(X , �) = �⋆R (X ) + �̃R(X )� + o(�)

r(X , �) = r⋆(X ) + r̃(X )� + o(�), q(X , �) = q⋆(X ) + q̃(X )� + o(�), �(X , �) = �⋆(X ) + �̃(X )� + o(�),

vd (X , �) = v⋆d (X ) + ṽd (X )� + o(�), �R(X , �) = �⋆R (X ) + �̃R(X )
√
� + (�), �X (X , �) = �⋆X (X ) + �̃X (X )

√
� + (�),

where, for instance, r ∗(X ) = r(X , 0) and r̃ (X ) = r�(X , 0). From Lemma 1, recall that we know that:

v⋆d (X ) = �
⋆
R (X ) = �

⋆
X (X ) = �

⋆(X ) = �⋆q (X ) = �
⋆
X (X ) = 0,

r⋆(X ) = � + 
�, �⋆R (X ) = � + 
�.

Next, plugging the �rst-order approximation of the aggregate variables into (A.9), we write the HJB equa-

tion as follows:

�⋆V̂ =
Ĉ1−


1 − 

+ V̂Ŵ [(r

⋆ + r̃� + 
�2� − �)Ŵ + (�̃� − 
��̃R�)q⋆S − 0.5q⋆�n2 − Ĉ − ṽd��q⋆|n|] + V̂Sn�(�)

+ VX̂ (�̃X̂ � − (
 − 1)��̃X̂ �) + V̂Ŵ Ŵ (�̃
2
R
(q⋆S)2

2
� − Ŵ q⋆S��̃R� +

�2�
2
Ŵ 2

)

+ VŴ X̂ �̃X̂ (q
⋆S�̃R,t − Ŵ�) � +

1
2
�̃ ′X̂VX̂ X̂ �̃X̂ � +


(
 − 1)
2

V̂ �2� + o(�).

Step 2: Derivative of the Value Function at � = 0. Taking the derivative of the expression above with

respect to �, and evaluating the resulting expression at � = 0 we obtain:1

�⋆V̂� = V̂ ⋆
Ŵ [(r̃ + 
�

2)Ŵ + (�̃ − 
��̃R) q⋆S] + V̂W,�[(r⋆ − �)Ŵ − A−
1

 Ŵ ]

+
1
2
V̂ ⋆
Ŵ Ŵ (�̃

2
R(q

⋆S)2 − 2Ŵ q⋆S��̃R + �2Ŵ 2
) +


(
 − 1)
2

V̂ ⋆�2, (A.10)

where we used the fact that V ⋆
S = V ⋆

X̂
= V ⋆

WX̂
= V ⋆

X̂ X̂
= n⋆ = 0. Note that the expression above involves V̂�

and its derivative in W , V̂W,� . If the term multiplying V̂W,� were di�erent from zero, then the perturbation

would reduce the problem of solving a non-linear PDE into the solution of a linear ordinary di�erential

equation. Given the normalization of the value function, the term multiplying V̂W,� is actually equal to

1Note that the value function, and its derivatives, and the control variables, are also functions of �. After taking the derivative
with respect to �, we evaluate the resulting expression at � = 0. This last step yields terms as, for example, V̂ ⋆

Ŵ
, which is shorthand

notation for V̂Ŵ (Ŵ , S, X̂ ; 0), and was computed in Lemma 1 (without the normalization).
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zero, as A−
1

 = r⋆ − �. In this case, the problem simpli�es further to a linear (algebraic) equation in V̂� ,

whose solution is given by:

V̂�(Ŵ , S, X̂ ; 0) =
AŴ 1−


�⋆ [
r̃(X̂ ) + �̃(X )

q⋆S
Ŵ

−


2
�̃2R(X̂ ) (

q⋆S
Ŵ )

2

]
.

Converting back to the expression in levels (recall that we standardized: by Yt ), we have that:

Ṽ (W , S, X ) =
AW 1−


�⋆ [
r̃(X ) + �̃(X )

p⋆(X )S
W

−


2
�̃2R(X )(

p⋆(X )S
W )

2

]
. (A.11)

Step 3: Consumption Policy Function. Given the expression for the value function, we can solve for the

policy functions. Consumption is given by:

C(W , S, X ; �) = VW (W , S, X ; �)−
1



= V ⋆
W (W , S, X )−

1

 −

1


V ⋆
W (W , S, X )−

1+


 ṼW (W , S, X )� + (�2), (A.12)

where the �rst equality follows from the �rst order condition for consumption, and the second equality is

a �rst order expansion of VW (W , S, X ; �)−
1

 in �. The �rst-order correction for consumption, which is the

second term in the right hand side of (A.12), is then given by:

C̃(W , S, X ) =
A−

1



�⋆ [

 − 1



r̃(X ) + �̃(X )
p⋆(X )S
W

−
(
 + 1)
2

�̃2R(X )(
p⋆(X )S
W )

2

]
W ,

where using the fact that A−
1

 = �⋆, we obtain expression (30).

Step 4: Market Tightness. From equation (16), note that the market tightness is given by:

�1−� = �
VS (W , S, X ) n

VW (W , S, X ) vdp|n|
.

Rearranging the expression above, we obtain that in the limit when � → 0,2 market tightness is well

2Note that the limit is indeterminate. However, note that:

lim
�→0

VS
� (

vd
� )

−1
= lim

�→0(
V ⋆
S

�
+
ṼS�
�

+ (�2))(
v⋆d
�
+
ṽd�
�

+ (�2))

−1

=
ṼS
ṽd
.

A similar reasoning applies to n
∣n∣ .
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de�ned and given by:

�⋆(W , S, X ) = [
�

ṽd (X )
Ω̃(W , S, X )
p⋆(X )

ñ
|ñ| ]

1
1−�

,

where:

Ω̃(W , S, X ) =
ṼS(W , S, X )
V ⋆
W (W , S, X )

,

=

 �̃2R(X )
�⋆ (

�̃(X)

 �̃R(X )2

−
p⋆(X )S
W )p⋆(X ).

The market tightness is then given by:

�⋆(W , S, X ) = [
�
 �̃2R(X )
�⋆ṽd (X )

||||
�̃ (X )


 �̃R(X )2
−
p⋆(X )S
W

||||]

1
1−�

.

Step 5: Orders. The order size can be written as:

ñ(W , S, X ) = �(�⋆(W , S, X ))
1 − �
�


 �̃2R(X )
�⋆ (

�̃(X)

 �̃2R(X )

−
p⋆(X )S
W ) .

Step 6: Intermediation Fees. For further reference, note that the fees satisfy the condition:

�(W , S, X ; �) =
�(W , S, X ; �)

�(�(W , S, X ; �))
p(X ; �)vd (X ; �).

Using the fact that vd = (�), we obtain that �(W , S, X ; 0) = 0. The �rst-order term is given by:

�̃(W , S, X ) =
�⋆(W , S, X )

�(�⋆(W , S, X ))
p⋆(X )ṽd (X ) = �|Ω̃(W , S, X )|.

A.5 Proof of Proposition 4

Proof. Rearranging the market-clearing condition, we obtain the expression:

�
|||||

s
x
−

�̃(X )

 �̃2R(X )

|||||

1+�
1−�

= (1 − �)
|||||

�̃ (X )

 �̃2R(X )

−
1 − s
1 − x

|||||

1+�
1−�

.
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Note that the expression above holds whether or not s > x , the case considered in the main text. Rear-

ranging the expression above, we obtain:

�̃ (X ) =
[

�
1−�
1+�

�
1−�
1+� + (1 − �)

1−�
1+�

s
x
+

(1 − �)
1−�
1+�

�
1−�
1+� + (1 − �)

1−�
1+�

1 − s
1 − x ]


 �̃2R(X ).

De�ning �̃ ≡ �
1−�
1+� [�

1−�
1+� + (1 − �)

1−�
1+� ]

−1
, we obtain expression in Equation (35).

A.6 Proof of Proposition 5

Proof. We can write the market clearing condition for goods (22) as follows:

xt
Ĉ(Ŵ1,t , S1,t , X̂t ; �)

Ŵ1,t
+ ��

n2(Ŵ1,t , S1,t , X̂t ; �)
2

+ (1 − xt )
Ĉ(Ŵ2,t , S2,t , X̂t ; �)

Ŵ2,t
+ (1 − �)�

n2(Ŵ2,t , S2,t , X̂t ; �)
2

+ vd (Xt ; �)d� =
1
qt
, (A.13)

The �rst-order approximation of the expression above gives:

x [

 − 1



r̃(X ) + �̃(X )
s
x
−
(
 + 1)
2

�̃2R(X ) (
s
x )

2

] + (1 − x) [

 − 1



r̃(X ) + �̃(X )
1 − s
1 − x

−
(
 + 1)
2

�̃2R(X ) (
1 − s
1 − x )

2

] (A.14)

= −
q̃(X )
q⋆(X )

. (A.15)

where we used that n2 and vdd� are of order �2. From the expression for expected returns in the risky asset, we

have that:
1
qt
+ � + �q,t + �

√
��q,t = rt + �t .

Computing the �rst-order approximation of the expression above, we obtain:

−
q̃(X )
q⋆(X )2

= r̃(X ) + �̃(X ), (A.16)

where we used the fact that �q,t = (�2) and
√
��q,t = (�2). From (A.14) and (A.6), we obtain:


 − 1



r̃(X ) + �̃(X ) −

 + 1
2 [x (

s
x )

2
+ (1 − x) (

1 − s
1 − x )

2

] �̃
2
R(X ) = r̃(X ) + �̃(X ).

Rearranging the expression above, we obtain:

r̃ (X ) = −

(
 + 1)

2 [x (
s
x )

2
+ (1 − x) (

1 − s
1 − x )

2

] �̃
2
R(X )
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Using the fact that r(X , �) = r⋆(X ) + r̃(X )� + (�), we obtain the expression in Equation (37).

A.7 Proof of Proposition 6

Proof. Step 1: Dealers’ Value. Plugging (31) and (32), which are the expressions for �⋆ and ñ, into the

dealers’ capacity constraint (with equality), condition (4), and using the de�nition of the market tightness

to solve for mass of contracts posted by dealers, we obtain:

ṽd (X ) = [
1 − �
��d (

� (
�|Ω̃1|
p⋆(X ))

2
1−�

+ (1 − �)(
�|Ω̃2|
p⋆(X ))

2
1−�

)]

1−�
1+�

.

Using the expression for the marginal value of portfolio rebalancing (29) and the expression for the risk

premium (35), we obtain:

|Ω1(x, s)|
p

=

�2

r⋆ − �
(1 − �̃)

||||
s
x
−
1 − s
1 − x

||||
,

|Ω2(x, s)|
p

=

�2

r⋆ − �
�̃
||||
s
x
−
1 − s
1 − x

||||
. (A.17)

Combining the expressions above, we get:

ṽd (X ) = vd
||||
s
x
−
1 − s
1 − x

||||

2
1+�
,

where:

vd ≡ (�

�2

r⋆ − �)

2
1+�

[
1 − �
��d (� (1 − �̃)

2
1−� + (1 − �)�̃

2
1−�)]

1−�
1+�

.

Note that we can write vd as follows:

vd = (�

�2

r⋆ − �)

2
1+�

(
1 − �
��d )

1−�
1+� �

1−�
1+� (1 − �)

1−�
1+�

�
1−�
1+� + (1 − �)

1−�
1+�
.

Step 2: Market Tightness. Combining (31) with the expressions for the marginal value of portfolio rebal-

ancing and the dealer’s value derived above, we obtain the market tightness for investor j:

�⋆j (x, s) = (
�(1 − �̃j)
ṽd (x, s)

||||
1 − s
1 − x

−
s
x
||||

�2

�⋆ )

1
1−�

,

where �̃j = 1j=1�̃ + 1j=2(1 − �̃). Plugging the expression for the dealer’s value into the expression above, we
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obtain:

�⋆j (x, s) = [�j�

�2

r⋆ − �
1 − �
��d ]

− 1
1+� ||||

1 − s
1 − x

−
s
x
||||

− 1
1+�

= � jΔ−
1
1+� , (A.18)

where � j ≡ [�j�

�2
r⋆−�

1−�
��d ]

− 1
1+� and Δ is the portfolio dispersion de�ned in De�nition 3.

Step 3: Volume. Volume traded can be written as:

V(x, s) = �|n1(x, s)|�(�1(x, s)),

where n1(x, s) and �1(x, s) denote the number of shares and the market tightness for investor 1. By market

clearing of the risky asset, we would obtain the same result if we used the order size and market tightness

for investor 2. Plugging (A.17) and (A.18), which are the expressions for the marginal value of portfolio re-

balancing and the market tightness, into (31) we obtain the expression for the trading volume as a function

of the state variables:

V(x, s) = �(1 − �̃)

�2

�⋆ (
�
�)

2 1 − �
�

�2�1
||||
1 − s
1 − x

−
s
x
||||

1−�
1+�
� + o(�),

We can write the expression above as follows:

V(x, s) = VΔ
1−�
1+� � + o(�),

where:

V =
�
1−�
1+� (1 − �)

1−�
1+�

�
1−�
1+� + (1 − �)

1−�
1+� [

1 − �
��⋆ (

�d�

� )

2
1−�


�2
]

1−�
1+�

.

Note how volume traded is increasing in the e�ciency of the matching function � and the dealers’ inter-

mediation capacity d . Volume is decreasing in the adjustment cost parameter � . Volume is also increasing

in the amount of risk �2 and the risk aversion coe�cient 
 .

Step 4: Bid-ask Spread. Combining (18) and (A.17), we obtain:

�ba(x, s) =
�

r⋆ − �
||||
s
x
−
1 − s
1 − x

||||

�2� =

�
�2

r⋆ − �
Δ�.
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A.8 Proof of Proposition 7

Proof. This proof follows closely the steps of Propositions 3, 4, and 6.

Step 1: Marginal Value of Portfolio Rebalancing. Note that in the derivation of the results in Proposi-

tion 3, we did not use the fact that investors have homogeneous preferences, as it characterizes the solution

of the investors’ problem for arbitrary values of the interest rate, risk premium, and volatility. Therefore,

it is immediate that the marginal value of rebalancing satis�es:

Ω̃k(W , S, X ) =

k �̃2R(X )
r⋆ − � (

�̃(X )

k �̃2R(X )

−
p⋆(X )S
W )p⋆(X ),

which proves part (a).

Step 2: Risk Premium. Following similar steps to those of Proposition 4, we obtain:

�
||||

1�̃2R(X )

s
x
− �̃(X )

||||

1+�
1−�

= (1 − �)
||||
�̃ (X ) − 
2�̃2R(X )

1 − s
1 − x

||||

1+�
1−�
.

Rearranging the expression above yields part (b).

Step 3: Bid-ask Spread. Following similar steps to Proposition 6, combining (18) with the marginal value

of portfolio rebalancing, we obtain part (c).

A.9 Proof of Proposition 8

Proof. We prove Proposition 8 for the more general case with heterogeneous risk aversion, Epstein-Zin

preferences, and order execution risk. We focus on the case of two types of investors: 
i = 
1 if i ≤ � and


i = 
2 if i > � . Investors have continuous-time Epstein-Zin (recursive) preferences:

Vi,t = Et [∫
∞

t
fi(Ci,s , Vi,s)ds] ,

where:

fi(C, V ) = �
(1 − 
i)V
1 −  −1

⎡
⎢
⎢
⎣
(

C

((1 − 
i)V )
1

1−
i )

1− −1

− 1
⎤
⎥
⎥
⎦
.

Step 1: Deriving the detrended HJB equation.
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Step 1.1: HJB equation. The HJB equation is given by:

0 = max
C,n,�

fi(C, Vi,t ) + E[dVi,t ].

Applying Ito’s lemma to the expression above and dropping the i subscripts, we obtain:

�
(1 − 
)V
1 −  −1

= max
C,n,�

�
(1 − 
)V
1 −  −1 [

C

((1 − 
)V )
1
1−
 ]

1− −1

+ VW [rW + �pS −
�
2
pn2 − C] + VX �X

+
1
2
VWW�2R(pS)

2 + pS�RVWX�X +
1
2
� ′XVXX�X + [V (W −

�vd
�(�)

p|n|, S + n, X) − V (W , S, X )] �(�).

Step 1.2: De-trending. As in the CRRA case, it is convenient to work with detrended variables. We write the

normalized consumption, wealth, and value function as Ĉi,t = Ci,t
Yt , Ŵi,t =

Wi,t
Yt and V̂i,t = Vi,t

Y 1−
it
, respectively.

The normalized value function can be written as V̂i,t = V̂ (Ŵi,t , Si,t , X̂t ; �), where X = (Y , X̂ ), and X̂ is the

relevant state variable for the detrended economy.

Step 1.3: Detrended HJB Equation. Using the de�nition of the detrended variables into the HJB equation,

after several algebraic steps, we obtain:

�
(1 − 
)V̂
1 −  −1

= max
Ĉ,n,�

�
(1 − 
)V̂
1 −  −1 [

Ĉ

((1 − 
)V̂ )
1
1−
 ]

1− −1

+ V̂Ŵ [rŴ + �qS −
�
2
qn2 − Ĉ] + [(1 − 
)V̂ − V̂Ŵ Ŵ ] � + V̂X̂ �X̂

+
1
2
V̂Ŵ Ŵ �2R(qS)

2 + qS�R [−
V̂Ŵ − V̂Ŵ Ŵ Ŵ ] � + qS�RV̂WX̂�X̂ +
1
2 [
(
 − 1)V̂ + 2
 V̂Ŵ Ŵ + V̂Ŵ Ŵ Ŵ 2

] �
2

+ � [(1 − 
)V̂X̂ − V̂Ŵ X̂ Ŵ ] �X̂ +
1
2
� ′X̂VX̂ X̂�X̂ + [V̂ (Ŵ −

�vd
�(�)

q|n|, S + n, X̂) − V̂ (Ŵ , S, X )] �(�),

where we used the fact that VX �X = VY �Y + VX̂ �X̂ , � ′XVXX�X = VYY�2Y 2 + 2VX̂Y�X̂�Y + � ′
X̂
VX̂ X̂�X̂ , and

VWX�X = VWY�Y + VWX̂�X̂ .3

Combining common terms, we can rewrite the expression above as follows:

�̂
(1 − 
)V̂
1 −  −1

= max
Ĉ,n,�

�
(1 − 
)V̂
1 −  −1 [

Ĉ

((1 − 
)V̂ )
1
1−
 ]

1− −1

+ V̂Ŵ [(r − � + 
�
2)Ŵ + (� − 
��R)qS −

�
2
qn2 − Ĉ]

+ V̂X̂ (�X̂ + (1 − 
)��X̂ ) +
1
2
V̂Ŵ Ŵ [qS�R − �Ŵ ]

2
+ (qS�R − Ŵ�)V̂WX̂�X̂ +

1
2
� ′X̂VX̂ X̂�X̂

+ [V̂ (Ŵ −
�vd
�(�)

q|n|, S + n, X̂) − V̂ (Ŵ , S, X )] �(�),

3Note that using V (W , S, X ) = Y 1−
 V̂ (
W
Y , S, X̂) we can express the derivatives of V (⋅) in terms of the detrended value

function V̂ (⋅).
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where we have de�ned �̂ ≡ � − (1 −  −1) (� −

�2
2 ).

Step 2: The benchmark economy. We will consider next the benchmark economy where � = 0. Step 2.1:

Solution to the investor’s problem. We initially assume that in this economy we have:

�⋆ = �⋆R = v
⋆
d = �

⋆
X̂ = �

⋆
X̂ = 0,

where the superscript ⋆ is used to denote variables in the benchmark economy. The HJB equation is given

by:

(� − (1 −  −1)�)
(1 − 
)V̂ ⋆

1 −  −1
= max

Ĉ,n,�
�
(1 − 
)V̂ ⋆

1 −  −1 [
Ĉ

((1 − 
)V̂ ⋆)
1
1−
 ]

1− −1

+ V̂ ⋆
Ŵ [(r

⋆ − �)Ŵ −
�
2
q⋆n2 − Ĉ]

+ [V̂
⋆
(Ŵ , S + n, X̂) − V̂

⋆(Ŵ , S, X )] �(�).

We guess-and-verify that the value function takes the form:

V̂ ⋆(Ŵ , S, X̂ ) = A
1−

1− −1

W 1−


1 − 

. (A.19)

The HJB equation can then be written as:

�⋆

1 −  −1
= max

Ĉ,n,�

�
1 −  −1 [

Ĉ

A
1

1− −1 Ŵ ]

1− −1

+ (r⋆ − �) −
�
2
q⋆n2

Ŵ
−
Ĉ
Ŵ

.

The policy functions are given by:

Ĉ⋆(Ŵ , S, X̂ ) = � A− , n⋆(Ŵ , S, X̂ ) = 0, (A.20)

where �⋆(Ŵ , S, X̂ ) is indeterminate. Plugging the policy functions back into the HJB equation, we obtain:

� A− =  � + (1 −  )r⋆.

Step 2.2: Determining asset prices. From the market clearing condition for goods, we have that:

∫
1

0
Ĉi,tdi = 1 ⇒ � A− ∫

1

0
Ŵi,tdi = 1 ⇒ � A− =

1
q⋆
,
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where we used the market clearing condition for the risky asset ∫ 10 Ŵi,tdi = q⋆t .

Given that the risk premium is zero, then �⋆R =
1
q⋆ + � = r

⋆. Using the expression for the consumption-

wealth ratio derived above, we obtain:

 � + (1 −  )r⋆ = r⋆ − � ⇒ r⋆ = � +  −1�,

and � A− = (q⋆)−1 = � − (1 −  −1)�, a quantity that is assumed to be positive.

Step 2.3: Joint distribution of wealth and asset holdings. De�ne the wealth share of investor i as xi,t ≡
Ŵi,t

∫ 10 Ŵi,tdi
and the asset share of investor i as si,t ≡ Si,t

∫ 10 Si,tdi
. Let G1,t (x, s) = 1

� ∫
�
0 1{xi,t≤x,si,t≤s}di and G2,t (x, s) =

1
1−� ∫

1
� 1{xi,t≤x,si,t≤s}di denote the joint distribution of xi,t and si,t conditional on being of type 1 and type 2,

respectively. This pair of distributions corresponds to the aggregate state variable in this economy, that is,

X̂t = (G1,t (⋅), G2,t (⋅)).4 From the market clearing condition for the risky asset, we have that xi,t = Ŵi,t
qt . At

the benchmark economy, the price-dividend ratio q⋆ is constant. Using the fact that � A− = r⋆ − �, we

have that normalized wealth is constant, so xi,t is constant for all i ∈ [0, 1]. Given that n⋆ = 0, then si,t is

also constant for all i ∈ [0, 1]. Therefore, Gj,t (x, s) is constant in the benchmark economy, so �⋆
X̂
= �⋆

X̂
= 0.

Step 2.4: Dealers’ problem. Consider a contract & = (n, �), where n ≠ 0. Given that there is no value of �

which will generate a strict improvement over V ⋆(W , S, X ), then �t (&) = ∞ and �(�(&))
�(&)) = 0, according to

(8). This implies that the expected pro�t of the dealer is zero and the capacity constraint is not binding,

that is, v⋆d = 0.

Step 3: The �rst-order approximation of the investor’s problem.

Step 3.1: The detrended value function. We consider next the �rst-order correction terms. We start by taking

a �rst-order approximation of the aggregate variables with respect to �:

r(X , �) = r⋆(X ) + r̃(X )� + (�2),

and analogously for the remaining aggregate variables. The di�usion terms can be written as follows:

�R(X , �) = �⋆R (X ) + �̃R(X )
√
� + (�), �X (X , �) = �⋆X (X ) + �̃X (X )

√
� + (�).

4This implies that the state space is in�nite-dimensional in this case. Therefore, the derivatives of the value function with
respect to X̂ in the HJB equation should be interpreted as Fréchet derivatives, as discussed e.g. in Luenberger (1997).
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Plugging these expressions into the detrended value function, we obtain:

�⋆
(1 − 
)V̂
1 −  −1

= max
Ĉ,n,�

�
(1 − 
)V̂
1 −  −1 [

Ĉ

((1 − 
)V̂ )
1
1−
 ]

1− −1

+ V̂Ŵ [(r
⋆ + r̃� − � + 
�2�)Ŵ + (�̃ − 
��̃R)�q⋆S −

�
2
q⋆n2 − Ĉ]

+ V̂X̂ (�̃X̂ + (1 − 
)��X̂ )� +
1
2
V̂Ŵ Ŵ [q

⋆S�̃R − �Ŵ ]
2
� + (q⋆S�̃R − Ŵ�)V̂WX̂ �̃X̂ � +

1
2
�̃ ′X̂VX̂ X̂ �̃X̂ �

+ [V̂ (Ŵ −
�ṽd�
�(�)

q⋆|n|, S + n, X̂) − V̂ (Ŵ , S, X )] �(�) − (1 − 
)V̂

�2

2
� + (�2).

Taking the derivative of the expression above with respect to � and evaluating at � = 0, we obtain:

�⋆
(1 − 
)V̂�
1 −  −1

=
 −1 − 

1 − 


�(1 − 
)V̂�
1 −  −1 [

Ĉ⋆

((1 − 
)V̂ ⋆)
1
1−
 ]

1− −1

+ V̂Ŵ ,� [(r
⋆ − �)Ŵ − Ĉ⋆]

+ V̂ ⋆
Ŵ [(r̃ + 
�

2)Ŵ + (�̃ − 
��̃R)q⋆S] +
1
2
V̂ ⋆
Ŵ Ŵ [q

⋆S�̃R − �Ŵ ]
2
− (1 − 
)V̂ ⋆ 
�2

2
,

where we used the fact that V ⋆
X̂
= V ⋆

WX̂
= V ⋆

X̂ X̂
= n⋆ = 0.

Using (A.19), which is the expression for V̂ ⋆, and the fact that � A− = r⋆ − �, we obtain:

�⋆
(1 − 
)V̂�
1 −  −1

=
 −1 − 

1 − 


�⋆(1 − 
)V̂�
1 −  −1

+ A
1−

1− −1W 1−


[
r̃ + �̃

q⋆S
Ŵ

−


2
�̃2R (

q⋆S
Ŵ )

2

]
.

After some rearrangement, we obtain the expression for V̂� :

V̂�(Ŵ , S, X̂ ) =
A

1−

1− −1W 1−


�⋆ [
r̃(X̂ ) + �̃(X̂ )

q⋆(X̂ )S
Ŵ

−


2
�̃2R(X̂ )(

q⋆(X̂ )S
Ŵ )

2

]
.

Step 3.2: Consumption. The �rst-order condition for consumption is given by:

� ((1 − 
)V̂ )
1− 1− 

−1
1−


Ĉ− 
−1
= V̂W .

After some rearrangement, it gives the policy function for consumption:

Ĉ(Ŵ , S, X̂ ; �) = � ((1 − 
)V̂ (Ŵ , S, X̂ ; �))

1−
 
1−


V̂ − 
Ŵ
(Ŵ , S, X̂ ; �).
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The derivative of the expression above with respect to � is given by:

Ĉ� (Ŵ , S, X̂ ; 0) =
1 − 
 
1 − 


� (A
1−

1− −1W 1−


)


 1− 1−

(A

1−

1− −1W −
 )− (1 − 
)V̂� (Ŵ , S, X̂ ; 0)

−  � (A
1−

1− −1W 1−


)

1−
 
1−


(A
1−

1− −1W −


)

− −1
V̂Ŵ ,� (Ŵ , S, X̂ ; 0).

Plugging in the expressions for V̂�(Ŵ , S, X̂ ; 0) and V̂Ŵ ,�(Ŵ , S, X̂ ; 0), we get:

Ĉ�(Ŵ , S, X̂ ; 0) = (1 − 
 )
� A− 

�⋆
W

[
r̃(X̂ ) + �̃(X̂ )

q⋆(X̂ )S
Ŵ

−


2
�̃2R(X̂ )(

q⋆(X̂ )S
Ŵ )

2

]

−  
� A− 

�⋆
W

[
(1 − 
)r̃ (X̂ ) − 
 �̃(X̂ )

q⋆(X̂ )S
Ŵ

+ (
 + 1)


2
�̃2R(X̂ )(

q⋆(X̂ )S
Ŵ )

2

]
. (A.21)

From (A.20) and (A.21), the �rst-order expansion for consumption is given by:

Ĉ(Ŵ , S, X̂ ; 0) = � A− W +W
⎡
⎢
⎢
⎣
(1 −  )r̃ (X̂ ) + �̃(X̂ )

q⋆(X̂ )S
Ŵ

− (1 +  )


2
�̃2R(X̂ )(

q⋆(X̂ )S
Ŵ )

2⎤
⎥
⎥
⎦
� + (�2).

Step 3.3: Market tightness. The �rst-order condition for the market tightness is given by:

[V̂ (Ŵ −
�vd
�(�)

q|n|, S + n, X̂) − V̂ (Ŵ , S, X )] �
′(�) = (1 − �)V̂Ŵ (Ŵ −

�vd
�(�)

q|n|, S + n, X̂) vdq|n|. (A.22)

Note that the right-hand side of the expression above is of order (�2), as n = (�) and vd = (�).

We will show next that the left-hand side is also of order (�2). The parameter � a�ects the left-hand

side through several terms, including the choice variables � and n, the aggregate variables vd and q, and

the value function itself. Given the presence of the second-order term vd |n|, we can ignore the e�ects

through � and n and �x them at their zeroth-order terms. Let  (�) denote the term in brackets above (up

to second-order in �), as a function of �:

 (�) = V̂ (Ŵ −
�⋆ṽd
�(�⋆)

q⋆|ñ|�2, S + ñ�, X̂ ; �) − V̂ (Ŵ , S, X ; �).
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Note that  (0) = 0 and that the derivative of  (�) is given by:

 ′(�) = − V̂Ŵ
|||(Ŵ− �⋆ṽd

�(�⋆) q
⋆ |ñ|�2,S+ñ�,X̂ ;�)

2
�⋆ṽd
�(�⋆)

q⋆|ñ|� + V̂S
|||(Ŵ− �⋆ṽd

�(�⋆) q
⋆ |ñ|�2,S+ñ�,X̂ ;�)

ñ+

+ V̂�
|||(Ŵ− �⋆ṽd

�(�⋆) q
⋆ |ñ|�2,S+ñ�,X̂ ;�)

− V̂�
|||(Ŵ ,S,X̂ ;�)

.

Using the fact that V̂ ⋆
S = 0, we have that  ′(0) = 0. The second derivative of  (�) evaluated at � = 0

is given by:

 ′′(0) = −V̂Ŵ (Ŵ , S, X̂ ; 0)2
�⋆ṽd
�(�⋆)

q⋆|ñ| + 2V̂S,�(Ŵ , S, X̂ ; 0)ñ.

Taking a second-order expansion of the left-hand side and right-hand side of (A.22) with respect to �,

then gives:

[−V̂
⋆
Ŵ
�⋆ṽd
�(�⋆)

q⋆|ñ| + V̂S,� ñ] �(�
⋆)�−1 = (1 − �)V̂ ⋆

Ŵ ṽdq
⋆|ñ|,

where we used the fact that  (�) = (0) + ′(0)� + 1
2

′′(0)�2 + (�3).

Rearranging the expression above, we obtain:

�⋆(Ŵ , S, X̂ ) =
[

�
ṽd (X̂ )

Ω̃(Ŵ , S, X̂ )
q⋆(X̂ )

ñ
|ñ| ]

1
1−�

, (A.23)

where Ω̃(Ŵ , S, X̂ ) is the �rst-order correction for the marginal value of rebalancing, given by:

Ω̃(Ŵ , S, X̂ ) =
V̂S,�(Ŵ , S, X̂ ; 0)
V̂ ⋆
Ŵ
(Ŵ , S, X̂ )

=
[
�̃(X̂ ) − 
 �̃2R(X̂ )

q⋆(X̂ )S
Ŵ ]

q⋆(X̂ ).

Step 3.4: Order size. The �rst-order condition for the order size is given by:

V̂S (Ŵ −
�vd
�(�)

q|n|, S + n, X̂) �(�) = V̂Ŵ (Ŵ −
�vd
�(�)

q|n|, S + n, X̂) �vdqsg(n) + �V̂Ŵ (Ŵ , S, X̂ )qn.

Dividing the expression above by � and taking the limit as � goes to zero, we obtain:

V̂S,� (Ŵ , S, X̂) �(�
⋆) = V̂ ⋆

Ŵ (Ŵ , S, X̂) �ṽdq
⋆sg(ñ) + �V̂ ⋆

Ŵ (Ŵ , S, X̂ )q⋆ñ.
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Rearranging the expression above, we obtain:

ñ(Ŵ , S, X̂ ) =
1
� [

�(�⋆(Ŵ , S, X̂ ))
Ω̃(Ŵ , S, X̂ )
q∗(X̂ )

− sg(ñ)�⋆(Ŵ , S, X̂ )ṽd (X̂ )]
.

From Equation (A.23), we have that:

�⋆ṽd = ��(�⋆)
Ω̃(Ŵ , S, X̂ )
q⋆(X̂ )

ñ
|ñ|
.

Therefore, we can write the expression for ñ as follows:

ñ(Ŵ , S, X̂ ) = �(�⋆(Ŵ , S, X̂ ))
1 − �
�

Ω̃(Ŵ , S, X̂ )
q∗(X̂ )

. (A.24)

Step 4: Dealers’ value and intermediation fee. Step 4.1: Dealers’ value. Using the fact that �t (n, �) =

dt (n, �)/�t (n, �), the capacity constraint for dealers (4) with equality can be written as follows:

∫
Σ
�t (n, �)�t (n, �)|n|d& = d�,

where �t (n, �) is the mass of investors sending an order to contract (n, �) at period t . We can write the

expression above in terms of the joint distribution of wealth and asset holdings as follows:5

2
∑
j=1

�j ∫ �j(xqt , s, X̂ )|nj(xqt , s, X̂ )|dGj,t (x, s) = d�,

where we used the fact that Ŵi,t = xi,tqt and Si,t = si,t . Dividing the expression above by � and taking the

limit as � → 0, we obtain:

2
∑
j=1

�j ∫ �⋆j (xq
⋆, s, X̂ )|ñj(xq⋆, s, X̂ )|dGj,t (x, s) = d,

5To ease the notation, we performed the derivation of the value function and policy functions omitting the dependence on
the investor’s type. For the aggregation results, we need to take this dependence into account explicitly. Therefore, we use the
notation ñj (Ŵ , S, X̂ ) for the order size of an investor of type j ∈ {1, 2} and similarly for the remaining policy functions and value
function.
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Plugging in the expressions for the market tightness (A.23) and order size (A.24), we obtain:

2
∑
j=1

�j ∫
�
�
1 − �
� [

�
ṽd (X̂ )]

1+�
1−�

[
Ω̃j(xq⋆, s, X̂ )

q⋆(X̂ ) ]

2
1−�

dGj,t (x, s) = d,

Rearranging the expression above, we can solve for ṽd (X̂ ) as:

ṽd (X̂ ) =
⎡
⎢
⎢
⎣

2
∑
j=1

�j ∫
1 − �
��d [

�
Ω̃j(xq⋆, s, X̂ )

q⋆(X̂ ) ]

2
1−�

dGj,t (x, s)
⎤
⎥
⎥
⎦

1−�
1+�

.

Step 4.2: Intermediation fee. Using expression (10), we obtain the �rst-order correction for the intermedia-

tion fee (normalized by Yt ):

�̃j(Ŵ , S, X̂ ) =
�⋆j (Ŵ , S, X̂ )

�(�⋆j (Ŵ , S, X̂ ))
ṽd (X̂ )q̃⋆(X̂ ).

From (A.23), we have that �⋆j ṽd
�(�⋆j )

= � |Ω̃(Ŵ ,S,X̂ )|
q⋆(X̂ )

, so we can write the expression above as follows:

�̃j(Ŵ , S, X̂ ) = �|Ω̃j(Ŵ , S, X̂ )|.

Step 5: Interest rate. The market clearing condition for goods can be written as:

2
∑
j=1

�j ∫ (
x
Ĉj(xq̂(X̂ ), s, X̂ )

xq̂(X̂ )
+ 0.5�n2j (xq̂(X̂ ), s, X̂ ))

dGj(x, s) + vd,td� =
1

q(X̂ )
.

Taking a �rst-order approximation in � of the expression above, we obtain:

2
∑
j=1

�j ∫ x [(1 −  )r̃ (X̂ ) + �̃(X̂ )
s
x
− (1 +  )


j
2
�̃2R(X̂ ) (

s
x )

2

] dGj(x, s) = −
q̃(X̂ )
q⋆(X̂ )2

. (A.25)

The �rst-order approximation of 1/qt can be expressed in terms of the interest rate and the risk premium:

−
q̃(X )
q⋆(X )2

= r̃(X ) + �̃(X ), (A.26)

using the fact that 1
qt + � + �q,t + �

√
��q,t = rt + �t , �q,t = (�2) and

√
��q,t = (�2). From (A.25) and (A.26),
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we obtain:

r̃ (X̂ ) = −
1 +  −1

2

2
∑
j=1

�j ∫ x
j �̃2R(X̂ ) (
s
x )

2
dGj(x, s).

66



Online Appendix

OA.1 Derivations

OA.1.1 Investors’ �ow budget constraints

Let Bi,t denote the total amount invested in the risk-free asset at time t for investor i. Then, Bi,t evolves

according to:

dBi,t = [rtBi,t + Si,tYt −
1
2
pt�n2i,t − Ci,t] dt − ptdSi,t − �i,t |dSi,t |.

Let Wi,t ≡ Bi,t + ptSi,t denote investor i’s wealth, assessed at the inter-dealer price pt . Investor’s wealth

evolves according to:

dWi,t = dBi,t + dptSi,t + ptdSi,t

= [rtBi,t −
1
2
pt�n2i,t − Ci,t] dt + Si,t (Ytdt + dpt ) − �i,t |dSi,t |

= [rtWi,t + ptSi,t (�R,t − rt ) −
1
2
pt�n2i,t − Ci,t] dt + ptSi,t�R,tdZt − �i,t |dSi,t |,

where �R,t =
Yt
pt
+ �p,t and �R,t = �p,t .

OA.1.2 Investors’ �ow budget constraints: No order execution risk

The evolution of wealth and stocks is given by:

dWi,t = [rtWi,t + (�R,t − rt )ptSi,t −
1
2
pt�n2i,t − Ci,t] dt + �R,tptSi,tdZt − �i,t |dSi,t |

dSi,t = ni,tdNi,t .

When there is not execution risk, it holds that dNi,t = ni,t�(�i,t )dt . Furthermore �i,t |dSi,t | = �i,t |ni,t ∣

�(�i,t )dt . Thus, the budget constraint is now given by:

dWi,t = [rtWi,t + (�R,t − rt )ptSi,t −
1
2
pt�n2i,t − Ci,t] dt + �R,tptSi,tdZt − �i,t |ni,t ∣ �(�i,t )dt

dSi,t = ni,t�(�i,t )dt.
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OA.1.3 Return volatility

The variance of returns is given by the following expression:

�2R(X ) = �
2� + 2��q

√
� + �2q

= �2� + 2�2
q̃x
q⋆

(s − x) �2 + o(�2),

where we used that �x (x, s) = (s − x)�
√
� + (�) and �q = qx

q �x =
q̃x
q⋆ (s − x)��

√
� + o(�

√
�). Recall that the

�rst-order approximation of the expression for the expected return on the risky asset is given by:

q̃(x, s) = −q⋆(x, s)2(r̃ (x, s) + �̃(x, s)).

The derivative of the expression above with respect to x is given by:

q̃x (x, s) = −q⋆(x, s)2 [r̃x (x, s) + �̃x (x, s)] , (OA.1.1)

where

r̃x (x, s) =
(
 + 1)
2 [(

s
x )

2
− (

1 − s
1 − x )

2

] 
�
2

�̃x (x, s) = − [�̃
s
x2

− (1 − �̃)
1 − s
(1 − x)2 ]


�2.

The variance of returns can be written as:

�2R(X ) = �
2� − 2�2q⋆ [r̃x (x, s) + �̃x (x, s)] (s − x)�2 + o(�2).

Note that [r̃x (x, s) + �̃x (x, s)] (s − x)�
√
� is the sensibility of the discount rate to the aggregate shock. If

this term is negative, so a negative shock increases the discount rate, then the volatility of returns will be

larger than the volatility of the dividends � . The reason is that a countercyclical discount rate ampli�es the

e�ect of shocks on dividends. Expected returns will be countercyclical if, for instance, the risk premium

increases by more than interest rates fall in response to a negative shock.
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OA.2 Data and Additional Motivating Evidence

OA.2.1 Corporate bond transactions data

We use data on secondary market transactions in the corporate bond market from the Trade Reporting

and Compliance Engine (TRACE), made available by the Financial Industry Regulatory Authority (FINRA).

The TRACE data provide detailed information on all secondary market transactions self-reported by FINRA

member dealers. These include a bond’s CUSIP, trade execution time and date, transaction price ($100 =

par), the volume traded (in dollars of par), a buy/sell indicator, and �ags for dealer-to-customer and inter-

dealer trades.

We �rst �lter the report data for trade corrections and cancellations following the procedure described

in Dick-Nielsen (2014). We then merge the �ltered data set with the TRACE master �le, which contains

bond grade information, and also with the Mergent Fixed Income Securities Database (FISD) to obtain bond

fundamentals, such as issuing date, issuing amount, amount outstanding, etc. Following the literature,

we exclude bonds with special characteristics, such as variable coupon, convertible, exchangeable, and

puttable, as well as asset-backed securities and privately placed instruments. We follow Kargar et al.

(2020) to calculate transaction costs for the so-called risky-principal trades where dealers hold bonds in

inventories.

OA.2.2 Evidence form the GFC

During the 2007-2009 Global Financial Crisis (GFC), patterns similar to the COVID-19 crisis episode emerged

for asset prices, credit spreads, and trading costs, and turnover appeared, as shown in Figure OA.1. In the

corporate bond market, trading costs and turnover increased, while bond prices declined simultaneously,

albeit more gradually than for the COVID-19 episode.

OA.3 State-global Perturbations

In this section, we present the state-global perturbation method in more detail and show how they di�er

from standard linearization methods. We start by discussing the standard linearization procedure and its

limitations, and then study the state-global perturbation techniques and show how they can overcome

these limitations.
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Figure OA.1. Stock returns, interest rates, credit spreads, turnover, and transaction costs for corporate bonds during the Great
Recession. The vertical shaded bars indicate NBER recessions. Source: TRACE, Bloomberg, and FRED.

OA.3.1 Linearization

Discrete-time dynamic stochastic general equilibrium (DSGE) models can typically be written as:

Et(y, y′, x, x ′; �) = 0, (OA.3.1)

where y is a ny ×1 vector of controls, x is a nx ×1 vector of states, and n = nx +ny . The function (⋅) returns

a n × 1 vector. The parameter � controls the volatility of innovations and it is a perturbation parameter.

The solution of the model consists of policy functions and the laws of motion for the state variables:

y = g(x; �) (OA.3.2)

x ′ = ℎ(x; �) + �Σu, (OA.3.3)

where g maps ℝnx × ℝ+ into ℝny , ℎ maps ℝnx × ℝ+ into ℝnx , Σ is a nx × nu matrix, and u is a nu × 1 vector of

white noise disturbances.
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The case where � = 0 corresponds to a perfect foresight economy in which there is no uncertainty. We

assume that the policy functions are known at the non-stochastic steady state, that is, at x = x we have:

(y, y, x, x, 0) = 0, (OA.3.4)

where y = g(x, 0) and x = ℎ(x, 0).

The functions g and ℎ are usually characterized by using a �rst-order perturbation method, also known

as linearization. In particular, we take a Taylor expansion of g and ℎ around x = x and � = 0:1

g(x; �) = g(x; 0) + gx (x; 0)(x − x) + g�(x; 0)� + (||x − x, �||2) (OA.3.5)

ℎ(x; �) = ℎ(x; 0) + ℎx (x; 0)(x − x) + ℎ�(x; 0)� + (||x − x, �||2). (OA.3.6)

OA.3.1.1 Key features of the linearization solution

Three aspects of the solution are important to emphasize. First, the solution is accurate to the extent that

the perturbation parameter � and the distance to the steady state ||x − x|| are small. The analysis is, there-

fore, valid only in the neighborhood of the steady state and cannot inform the economy’s response to large

shocks, when the state variable x can deviate signi�cantly from x . Importantly, this local approximation re-

quires only local information; that is, one needs to know only y and x to compute the solution. Second, the

solution is linear in the state variable x . This implies, in particular, that the e�ect of shocks u on the policy

functions y is constant, so the �rst-order approximation is not able to capture any state-dependency of the

e�ects of shocks. Third, as shown by Schmitt-Grohé and Uribe (2004), the coe�cients on the parameter �

are equal to zero, that is, g�(x, 0) = ℎ�(x, 0) = 0. As a result, the solution satis�es the certainty-equivalence

property, where the policy functions coincide with the one in a non-stochastic economy. Risk does not

a�ect the economic outcomes up to a �rst-order approximation. In particular, the risk premium would

be equal to zero and portfolio choice would be indeterminate. A second-order approximation would be

required to obtain a non-zero risk premium, and a third-order approximation would be required to capture

time variation in the risk premium.

1The coe�cients of the approximation can be computed as follows. First, de�ne the function F (x, �) ≡ Et(g(x; �), g(ℎ(x; �)+
�Σu; �), x, ℎ(x; �) + �Σu; �) = 0, which is identically equal to zero. The derivatives of F (x, �) are then also equal to zero. In the
regular case, the coe�cients on (x − x) and � can be computed by solving the system of equations Fx (x, 0) = 0 and F� (x, 0) = 0.
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OA.3.2 State-global perturbation

We next consider a continuous-time problem, which can be written in general form as follows:

(y, yx , yxx , x; �) = 0, (OA.3.7)

where y is a ny × 1 vector of controls, x is a nx × 1 vector of states, and � is a perturbation parameter. The

function (⋅) returns a n × 1 vector.

The solution of the model consists of policy functions and the law of motion of state variables:

y = g(x; �) (OA.3.8)

dxt = �x (y, yx , yxx , x; �)dt + �x (y, yx , yxx , x; �)dZt . (OA.3.9)

We assume that the risk exposure of the state variable, �x (⋅), is equal to zero when � = 0, so we focus on a

small risk approximation. Notice that � can also directly a�ect other equations in the system, which would

include the case discussed in Section 3 where the intermediation capacity parameter was also a function

of �.

In contrast to the standard linearization procedure, we assume that the policy is known for all values

of x at � = 0, that is, the function g(x, 0) is known, as well as the drift and di�usion of x at � = 0, for all x .

Therefore, the method requires global information on the solution, not only on the value of the solution

at the steady state. In the context of our model, We provide this global solution in Lemma 1, which takes

a relatively simple form in our case.

We next consider a �rst-order perturbation in �, instead of an approximation in x and �, which assumes

the following form:2

g(x; �) = g(x; 0) + g�(x; 0)� + (�2), (OA.3.10)

and analogous expressions hold for �x (⋅) and �x (⋅).

2The coe�cients of the approximation can be computed as follows. First, de�ne the function F (x, �) ≡
(g(x; �), gx (x; �), gxx (x; �), x; �) = 0, which is identically equal to zero. The derivatives of F (x, �) are then also equal to zero.
In the regular case, the coe�cients on � can be computed by solving the system of equations F� (x, 0) = 0 for all x .
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OA.3.2.1 Key features of the state-global solution

Three aspects of the solution are important to emphasize. First, the solution is accurate to the extent

that the perturbation parameter � is small. Importantly, there is no requirement that the state variable

x needs to be close to the non-stochastic steady state value x , allowing us to study the behavior of the

economy far from the steady state, which is crucial when considering large shocks. Second, the solution

is potentially non-linear in the state variable x . This enables us to capture the state-dependent e�ects of

shocks, where the impact of shocks depend on its magnitude and initial condition. Third, the coe�cient

on � is, in general, non-zero and it is a function of the state variable x . This implies that the certainty-

equivalence property is not satis�ed, so risk has a �rst-order impact on the policy functions, and we are

able to obtain a time-varying risk premia without having to resort to higher-order approximations.

OA.3.2.2 The role of bifurcation theory

In the regular case where the elements of g�(x; 0) can all be determined, the coe�cients g�(x; 0) can be

obtained by applying the implicit function theorem. However, as is often the case in the small-risk ap-

proximations of portfolio problems, some elements of the solution are indeterminate in the non-stochastic

economy. For instance, in a frictionless portfolio problem, the portfolio share on the “risky” asset is in-

determinate when there is no risk. In our case, due to the presence of transaction costs, the order size

is determined in the limit with no risk, as it is optimal to not trade in that case. In contrast, the market

tightness is indeterminate, as the trading speed is not relevant when investors have no incentive to trade.

This indeterminacy leads to a violation of the regularity condition necessary to apply the implicit function

theory, which implies that a di�erent method is necessary to compute the coe�cients g�(x; 0).

Judd and Guu (2001) show that bifurcation theory can be used to compute approximations in situations

where the implicit function theorem does not hold. Intuitively, the indeterminacy is resolved by consider-

ing the limit of the solution as � → 0, which selects a unique value for the solution at � = 0. We apply the

methods of Judd and Guu (2001) to compute the value of the market tightness in Proposition 3.

OA.4 The Role of the Trading Elasticity

The degree of ampli�cation of the risk premium is related to the relative trading elasticity. The elasticity

of buy and sell orders is not constant in this economy, despite the iso-elastic preferences. The demand
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elasticity depends on the matching function parameter � and on how far an investor is from the target

portfolio:
) log
) log �

=
1 + �
1 − �

�̃(X )
�̃(X ) − 
�2R(X )!b

, (OA.4.1)

where !b is the portfolio share of buyers. It can be shown that the ratio of the trading elasticity of buyers

to sellers is given by (1 − �̃)/�̃ , when type-1 investors are sellers. Therefore, when �̃ is large, it means that

demand for shares is relatively inelastic and this coincides with the region where there is ampli�cation of

the risk premium. The right panel of Figure OA.2 shows how the risk premium responds as we vary the

ratio of demand to supply trading elasticity. We �nd that there is ampli�cation in the inelastic demand

region, e�ectively relating the amount of selling pressure (on the extensive margin) to the market elasticity.

This result is in line with the role of the market demand elasticity discussed by Gabaix and Koijen (2020).

Figure OA.2. The left panel of this �gure depicts the determination of orders and the risk premium. The right panel shows the
relation between the ratio of demand and supply trading elasticities and risk premium. The solid lines represent the case � = 0.5
and the dashed lines represent the case � > 0.5. To construct this �gure, we use the calibration discussed in Table 1 of Section 4
specialized to the case of no heterogeneity in risk aversion.

OA.8


	Motivating Evidence
	Asset pricing
	Liquidity
	Portfolio reallocation

	Model
	Environment
	Dealers and competitive search
	Investors
	Market tightness
	Competitive Search Equilibrium

	Equilibrium characterization
	Dealers' problem
	Investors' problem
	Inaction region and competitive search
	Marginal value of portfolio rebalancing
	Spreads and dealers' profitability
	The liquidity-adjusted CCAPM
	Markov Equilibrium


	Asset Pricing Implications of Portfolio Flows
	State-global perturbation
	The benchmark economy
	The small-risk economy

	The aggregate implications of search frictions
	Risk premium and order flow
	Interest rate
	Volatility
	Market liquidity

	Countercyclical portfolio asymmetry and dispersion

	Quantitative Implications of the Model
	Heterogeneous target portfolios.
	Calibration
	Quantitative impacts of search frictions
	Equilibrium dynamics after a large shock

	The Case of an Infinite-dimensional State Space
	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8

	Derivations
	Investors' flow budget constraints
	Investors' flow budget constraints: No order execution risk
	Return volatility

	Data and Additional Motivating Evidence
	Corporate bond transactions data
	Evidence form the GFC 

	State-global Perturbations
	Linearization
	Key features of the linearization solution

	State-global perturbation
	Key features of the state-global solution
	The role of bifurcation theory


	The Role of the Trading Elasticity

